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Abstract

A linear rational expectations model that satisfies the Blanchard-Kahn conditions
is deemed as locally determinate. If this model also possesses a unique minimum
state variable (MSV) solution, we term it as “globally determinate”. The canonical
New Keynesian model subject to the effective lower bound (ELB) constraint does
not generally possess a unique MSV solution unless monetary policy is passive;
conversely violating local determinacy. This global indeterminacy problem stems
from a strong feedback loop between expectations of endogenous variables and
their current realisations at the ELB. This problem extends to a standard tractable
heterogeneous agent New Keynesian (HANK) model. However, we show that
global determinacy is restored under passive monetary policy and sufficiently lim-
ited asset market participation when “inverted aggregate demand logic” applies
– further amplifying the “Catch-22 problem” in HANK models. Additionally, a
standard HANK model with an active robust real rate rule fails to satisfy global
determinacy conditions. But it is globally determinate with an inverted aggregate
demand curve, much like the passive Taylor rule case.
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1 Introduction

The representative agent New Keynesian (RANK)model with active monetary policy,
subject to the effective lower bound (ELB), either featuresmultipleminimumstate vari-
able (MSV) solutions with small shocks or solution non-existence with large shocks,
as shown in Ascari and Mavroeidis (2022) and Holden (2023). Solution uniqueness
can be achieved with passive monetary policy which, however, leads to indeterminate
local dynamics – a violation of the Blanchard-Kahn (BK) conditions. More simply, a
model that has a unique MSV solution that is locally determinate we refer to as sat-
isfying “global determinacy”. Our usage of the term global determinacy should not
be confused with recent studies such as Ravn and Sterk (2020) and Acharya and Ben-
habib (2024), which refer to the existence of multiple steady states and the inability of
the Taylor rule (TR) to pin down a unique rational expectations equilibriumwhen risk
is sufficiently countercyclical.

Non-existence of an MSV solution is due to a strong feedback loop between cur-
rent realisations of the endogenous variables and their expectations at the ELB. When
monetary policy is constrained due to a large adverse shock, deflation materialises.
Expectations of further deflation depress consumption and lead to more deflation and,
as a consequence, higher real rates today, which results in a deflationary spiral. For
the reference RANK model, one can ensure the existence of an MSV solution – with-
out violating local determinacy – by, for example, introducing unconventional mone-
tary policy (Ascari and Mavroeidis, 2022) (AM), deviating from rational expectations
(Ascari, Mavroeidis, and McClung, 2023), or by introducing fiscal policy (Murakami,
Shchapov, and Zhang, 2023).

This paper analyses whether household heterogeneity can provide a remedy for
the non-uniqueness of equilibria in New Keynesian models. We find that MSV so-
lution non-uniqueness persists in the tractable heterogeneous agent New Keynesian
(HANK) model; this is whether the model is calibrated to match empirical evidence
on cyclical income inequality (Patterson, 2023), or calibrated to resolve the “forward-
guidance puzzle” (McKay, Nakamura, and Steinsson, 2016, 2017; DelNegro, Giannoni,
and Patterson, 2023). Furthermore, we find the tractable HANKmodel only possesses
a uniqueMSV solution that is locally determinate – and thus globally determinate – if it
incorporates inverted aggregate demand logic (IADL) (Bilbiie, 2008); if the economy
features a large enough proportion of hand-to-mouth (HtM) households and if the
elasticity of their income with respect to aggregate income is large enough, the aggre-
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gate demand curve is inverted and, thus, an increase in real interest rates is associated
with elevated consumption. Thus, when the economy is at the ELB and there is defla-
tion, the HtM households increase their consumption which does not let the economy
to descend into a deflationary spiral.

With a Taylor-type rule, IADL, however, implies that monetary policy’s response to
inflation has to be passive to ensure local determinacy (Bilbiie, 2008); the restrictions
on the monetary policy feedback coefficient are cumbersome functions of structural
parameters of the economy. We find that this could be overcome if the central bank
resorts to a Robust Real Rate rule (RR), proposed by Holden (2024). Under a RR, the
structure or curvature of aggregate demand has no bearing on the restrictions on the
policy rule that ensure local determinacy and the standard Taylor principle applies. In
other words, the combination of IADL and an RR allows the tractable HANKmodel to
satisfy global determinacy with an active monetary policy rule.

This paper is related and contributes to three strands of literature: i) Multiple or
non-existence of equilibria in the NK model subject to the ELB due to rational expec-
tations (Benhabib, Schmitt-Grohé, and Uribe, 2001; Eggertsson and Woodford, 2003;
Eggertsson, 2011; Mertens and Ravn, 2014; Boneva, Braun, and Waki, 2016; Armenter,
2017; Christiano, Eichenbaum, and Johannsen, 2018; Nakata, 2018; Nakata and Schmidt,
2019; Bilbiie, 2022; Ascari and Mavroeidis, 2022; Angeletos and Lian, 2023; Holden,
2023; Murakami, Shchapov, and Zhang, 2023); ii) HANK models and their tractable
counterparts (Gornemann, Kuester, andNakajima, 2016;McKay,Nakamura, and Steins-
son, 2016, 2017; Kaplan, Moll, and Violante, 2018; Debortoli and Galı́, 2017; Kaplan,
Moll, and Violante, 2018; Ravn and Sterk, 2020; Bilbiie, 2020, 2024); and iii) weakening
the “rationality” of households to augment the household Euler equation (Angeletos
and Lian, 2018; Gabaix, 2020; Ascari, Mavroeidis, and McClung, 2023; Del Negro, Gi-
annoni, and Patterson, 2023).

The paper proceeds as follows. Section 2 outlines the model environment, Section
2.1 outlines theMSV solution non-uniqueness problem inherent inHANKmodelswith
standard aggregate demand logic and illustrates that this problem is not present with
IADL. Section 2.2 demonstrates the implications of a robust real rate rule for global
determinacy. Section 3 concludes the paper.
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2 Reference HANKModel

Consider the following tractable HANKmodel as in Bilbiie (2020, 2024) and Debortoli
and Galı́ (2024):

𝑥𝑡 = 𝛿E𝑡𝑥𝑡+1 − �̂�(𝑖𝑡 − E𝑡𝜋𝑡+1) + 𝜀𝑡 , (1)

𝜋𝑡 = 𝛽E𝑡𝜋𝑡+1 + 𝜅𝑥𝑡 , (2)

where variables are expressed as log-deviations from their deterministic steady state
values: 𝑥𝑡 is the output gap, 𝜋𝑡 is inflation, 𝑖𝑡 is the nominal interest rate, 𝜀𝑡 is a demand
shock, 𝛽 is the household discount factor, (1) is the dynamic IS equation (DISE) or
aggregate Euler equation, and (2) is the New Keynesian Phillips Curve (NKPC). To
close the model we first assume a standard Taylor-type rule,

𝑖𝑡 = max
{
−𝜇, 𝜙𝜋𝑡

}
, (3)

with 𝜇 = 𝜋∗ + 𝜌, 𝜋∗ is the net inflation target, and 𝜌 is the discount rate (such that
1
𝛽 = 1 + 𝜌). The expressions for 𝛿 and �̂� in the DISE are given as:

𝛿 ≡ 1 + (𝜒 − 1)(1 − 𝑠)
1 − 𝜆𝜒

, �̂� ≡ 1 − 𝜆

𝜎(1 − 𝜆𝜒) , (4)

where 𝜒 denotes the elasticity of a “hand-to-mouth/restricted” household’s consump-
tion and income to aggregate income, 𝑠 is a switching probability of an “unrestricted”
household (an agent on their consumption Euler equation) remaining as an unre-
stricted household, and 𝜆 is the mass of restricted households. Note that if �̂� = 1

𝜎

(the intertemporal elasticity of substitution), and 𝛿 = 1, then the DISE is equivalent to
its textbook representative-agent form as in Woodford (2003) and Galı́ (2015).

2.1 Global Determinacy with a Taylor-type rule: Catch-22 (Again)

We stipulate that global determinacy for a linear forward-looking rational expectations
model requires satisfying both local determinacy (Blanchard-Kahn conditions) and
for the model to possess a unique MSV solution. To verify the latter, we follow the
method of Ascari and Mavroeidis (2022) and illustrate the intuition following Mu-
rakami, Shchapov, and Zhang (2023). As in Eggertsson andWoodford (2003), Nakata
and Schmidt (2019), Christiano, Eichenbaum, and Johannsen (2018), and Ascari and

3



Mavroeidis (2022), we begin by assuming that the demand or preference shock follows
a two-state Markov process with states 𝜀𝑡 =

{
𝜀𝑇 , 0

}
and transition matrix

𝑲 =

[
𝑝 1 − 𝑝

1 − 𝑞 𝑞

]
, (5)

where 𝑝 is the probability of remaining in the first state and 𝑞 is the probability of
remaining in the second state. With this, we summarise global determinacy for the
tractable HANK model with a Taylor-type rule in Proposition 1:

Proposition 1 The tractable HANK model with a Taylor-type rule, as in Equations (1)-(3),
satisfies global determinacy if it concurrently satisfies local determinacy (Blanchard-Kahn con-
ditions) and if it possesses a unique minimum state variable solution. The latter of which holds
if

1. either �̂� < 0, and 𝜙 − 𝜗 < 0, and 𝛿 < 1 − 𝜅(𝜙−1)
1−𝛽 |�̂� |;

2. or �̂� > 0, and 𝜗 < 0, and 𝛿 < 1 − 𝜅�̂�
1−𝛽 ;

and where
𝜗 ≡ 𝑝 + 𝑞 − 1 − [(1 − 𝛿) + 𝛿 (2 − 𝑝 − 𝑞)] (1 − 𝛽𝑞 − 𝛽𝑝 + 𝛽)

𝜅�̂�
.

Proof: Appendix A.1.

To explain the intuition, we assume that 𝑞 = 1 for analytical tractability, and that
the model’s absorbing state is the positive interest rate (PIR) steady state, {𝑥𝑡 ,𝜋𝑡 , 𝑖𝑡} =
{0, 0, 0}. As such, with rational expectations we can write E𝑡𝜋𝑡+1 = 𝑝𝜋𝑡 to express the
aggregate Euler equation (1) as:

𝑥𝑡 = 𝛿E𝑡𝑥𝑡+1 − �̂�
(
max

{
−𝜇, 𝜙𝜋𝑡

}
− 𝑝𝜋𝑡

)
+ 𝜀𝑡 .

Substituting the NKPC (2) into the above equation, after writing it as 𝜋𝑡(𝑥𝑡), gives:

𝑥𝑡 =

(
𝛿 + �̂�𝜅

1 − 𝑝𝛽

)
E𝑡𝑥𝑡+1 − �̂�max

{
−𝜇,

𝜙𝜅

1 − 𝑝𝛽
𝑥𝑡

}
+ 𝜀𝑡 .

We thus get two forward-looking difference equations which correspond to the con-
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strained and unconstrained regimes,

𝑥𝑡 = Λ0E𝑡𝑥𝑡+1 + �̂�𝜇 + 𝜀𝑡 , (6)

𝑥𝑡 = Λ1E𝑡𝑥𝑡+1 + Υ𝜀𝑡 , (7)

respectively, and where

Λ0 ≡ 𝛿 + �̂�𝜅
1 − 𝑝𝛽

, (8)

Λ1 ≡
𝛿(1 − 𝑝𝛽) + �̂�𝜅

1 − 𝑝𝛽 + �̂�𝜅𝜙
, (9)

withΥ ≡ 1−𝑝𝛽
1−𝑝𝛽+�̂�𝜅𝜙 . First, consider the unconstrained forward-looking difference equa-

tion (7). It possesses a fundamental solution if |𝑝Λ1 | < 1. In conventional analy-
sis of DSGE models, this condition corresponds to the satisfaction of the BK condi-
tion.1 In a RANK model, the BK condition is satisfied if the monetary policy rule sat-
isfies the Taylor principle, i.e., 𝜙 > 1. For the baseline tractable HANK model, with
𝜆𝜒 < 1 =⇒ �̂� > 0, from (7) the BK condition is satisfied if the following HANK
Taylor principle holds (Bilbiie, 2024):

𝜙 > 1 + (1 − 𝑝𝛽)(𝛿 − 1)
�̂�𝜅

.

Note that for the special case of 𝑞 = 1, that 𝜗 in Proposition 1 represents the lower
bound for the HANK Taylor principle.

It follows then that we require |𝑝Λ0 | < 1 in (6) in order for a fundamental solution
– the unique MSV solution – to exist for the constrained forward-looking difference
equation.2 The intuition for this is as follows: If |𝑝Λ0 | > 1 then (6) implies that a nega-

1. Recall that the root of the characteristic polynomial is (|𝛿Λ1 |)−1. Since this is a single equation with
a forward-looking variable, in order to satisfy the BK condition, we require the root to be outside of unit
circle.

2. Since this corresponds to the case of continuous shock support:

𝑥𝑡 = E𝑡

∞∑
𝑠=0

Λ𝑠
0
(
�̂�𝜇 + 𝜀𝑡+𝑠

)
,

where the fundamental solution is:

𝑥𝑡 =
�̂�

1 −Λ0
𝜇 + E𝑡

∞∑
𝑠=0

Λ𝑠
0𝜀𝑡+𝑠 .
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Table 1: Calibration of HANKModels

Implied parameters
𝜒 𝜆 𝑠 𝛿 �̂� Λ0 Λ1

HANK-C
Gornemann, Kuester, and Nakajima (2016) 1.76 0.30 0.96 1.06 0.74 14.18 0.52
Debortoli and Galı́ (2017) 2.38 0.21 0.96 1.11 0.79 15.08 0.52
Kaplan, Moll, and Violante (2018) 1.42 0.41 0.96 1.04 0.71 13.53 0.52
HANK-P
McKay, Nakamura, and Steinsson (2016, 2017) 0.30 0.21 0.96 0.97 0.42 8.43 0.53

Note: Parameter values sourced from Bilbiie (2020) and authors’ calculations. Additional parameter
calibration values are 𝜙 = 2, 𝛽 = 0.99, 𝜎 = 2, 𝜅 = 0.1769, and 𝑝 = 1 for Λ0 and Λ1 calculations.

tive output gap will lead to a more negative expected output gap E𝑡𝑥𝑡+1 for a negative
demand shock 𝜀𝑇 < 0. This is the negative feedback loop we showed in Murakami,
Shchapov, and Zhang (2023), whereby the loop leads to no fixed point where expecta-
tions settle into an equilibrium. Another way to see this is to use E𝑡𝑥𝑡+1 = 𝑝𝑥𝑡 to write
(6) as:

𝑥𝑡 =
1

1 − 𝑝Λ0

(
�̂�𝜇 + 𝜀𝑡

)
,

and one can see that if |𝑝Λ0 | > 1, a large negative realisation of 𝜀𝑇 leads to 𝑥𝑡 being
positive, which is inconsistent with an ELB equilibrium. For the RANK model, and
as discussed in Ascari and Mavroeidis (2022), for a fundamental solution to exist it
is required that either: i) 𝑝 be sufficiently small so that |𝑝Λ0 | < 1, or ii) that 𝜀𝑇 be
sufficiently small, i.e., have sufficient mass around zero as discussed in Holden (2023).
Here in the HANKmodel, the requirement |𝑝Λ0 | < 1 is more difficult to assess because
of 𝛿 and �̂� – specifically the relationship between the two due to 𝜆𝜒.

We argue that global determinacy, in a HANK model subject to the ELB, requires
that there exist a fundamental solution in both the constrained and unconstrained
forward-looking difference equations, (6) and (7). In other words, global determinacy
requires {|Λ0 |, |Λ1 |} < 1.

We test if the tractable HANK model satisfies global determinacy with two classes
of standard calibrations, which we refer to as “HANK-C” and “HANK-P”, as shown
in Table 1. These specifications coincide to the “Catch-22” for the reference HANK
model adopted in the literature: the trade-off between countercyclical income inequal-
ity consistent with empirical evidence in Patterson (2023) (HANK-C) and resolution
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of the forward guidance puzzle with procyclical income inequality as inMcKay, Naka-
mura, and Steinsson (2016, 2017) (MNS) (HANK-P).3 Under these calibrated values,
we compute the coefficients of the forward-looking difference equations (6) and (7),
setting 𝑝 = 1 and display the results in Table 1.

Despite satisfying local determinacy requirements (|Λ1 | < 1), both HANK-C and
HANK-P fail to satisfy global determinacy requirements, because the coefficient in the
constrained regime forward-looking difference equation (6) is greater than unity, i.e.,
|Λ0 | > 1. The reason is a dominant income effect channel, since it exerts upward pres-
sure on inflation and output following a negative demand shock 𝜀𝑇 < 0: an increase
in E𝑡𝑥𝑡+1 leads to a greater increase in 𝑥𝑡 . This is a potential non-existence of an MSV
solution at the ELB. For the case of the RANK model, this problem can be addressed
by, for example, introducing unconventional monetary policy (Ascari andMavroeidis,
2022), deviating from rational expectations (Ascari, Mavroeidis, and McClung, 2023),
or by introducing simple fiscal policy (Murakami, Shchapov, and Zhang, 2023) to re-
duce the strength of the income-effect feedback loop betweenE𝑡𝑥𝑡+1 and 𝑥𝑡 by lowering
the value of Λ0.

But in the tractable HANK framework, the presence of restricted households, as
well as the switching probability for an unrestricted households to become a restricted
household, provides a potential remedy for the non-existence of an MSV solution.
Combined with satisfaction of the BK conditions, this will allow the HANK model to
satisfy global determinacy requirements. For instance, by keeping all parameter val-
ues except 𝜎 fixed as in Table 1, only the HANK-P calibration of MNS can satisfy global
determinacy.4 However, this requires an extremely high level of risk aversion 𝜎 ⪆ 500,5

an implausible value in the empirical macroeconomics literature.
One way to proceed is to consider the case in which 𝜆𝜒 > 1. Recall that since 𝜆

is the share of restricted households and if 𝜆 ∈ (0, 1), we are considering the case of
countercyclical income inequality, 𝜒 > 1/𝜆.6 Under this condition we have 𝛿 < 1 and
�̂� < 0, and are subject to the inverted Keynesian cross or “inverted aggregate demand

3. See Bilbiie (2024) for details.
4. Since in the limit, as �̂� → 0,Λ0 → 𝛿 and Λ1 → 𝛿, HANK-C fails to satisfy BK conditions and does

not possess a unique MSV solution.
5. The condition |Λ0 | < 1 is given by

𝜎 >
(1 − 𝜆)𝜅

(1 − 𝜆𝜒)(1 − 𝛿)(1 − 𝑝𝛽) ,

in the case of 𝛿 < 1 and 𝑝 = 1.
6. Note that the class of HANK-C models are ruled out.
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logic” (IADL) outlined in Bilbiie (2008, 2024). With IADL, increases in the real interest
rate correspond to increases in consumption, thereby leading to an increase in 𝑥𝑡 .

Global determinacy with IADL. Since we are not interested in solutions that cause
oscillations, we require Λ−1

0 > 1, which we can write as:

𝛿 < 1 − �̂�𝜅
1 − 𝑝𝛽

,

which always holds true if 𝜒𝜆 > 1 =⇒ 𝛿 < 1.
For Λ−1

1 > 1 from (9), we it needs to hold that

𝜙 < 1 +
(1 − 𝑝𝛽)(𝛿 − 1)

�̂�𝜅
, (10)

which implies that the monetary policy feedback to inflation has to be passive.7

To summarise these results: a HANK-C model with an active TR generally fails to
satisfy the requirements to possess a uniqueMSV solution, much like the RANKmodel
with an active TR. Setting a passive TR in the HANK-C model allows it to possess a
unique MSV solution, but at the cost of violating local determinacy (BK) conditions.
This case corresponds to the red region below the dashed 𝜒𝜆 = 1 line in Figure 1,
and which was thoroughly discussed by Ascari and Mavroeidis (2022) for the RANK
model. It is thus not a candidate for satisfying what we call global determinacy.

However, a HANK-P model that is subject to IADL and a passive TR can satisfy
both the requirements of possessing a unique MSV solution and local determinacy.
This corresponds to the blue region above the dashed 𝜒𝜆 = 1 line in Figure 1. We
thus claim that HANK-P models are candidates to satisfy global determinacy. But,
the calibration of MNS, despite being a HANK-P class model, does not satisfy global
determinacy due to not having IADL as 𝜆𝜒 < 1.

Hence, the main contention of this paper is that requirements of global determi-
nacy further amplify the Catch-22 of [tractable] HANK models described by Bilbiie
(2020). HANK-C aggravates the forward guidance puzzle and is globally indetermi-
nate despite featuring consumption inequality cyclicality in line with empirical ev-
idence; HANK-P can resolve this puzzle, along with satisfying global determinacy
when properly calibrated, but the calibrations are not empirically plausible.

7. In principle, the denominator of Λ−1
0 is ambiguous; it is, however, non-negative under any reason-

able calibration of 𝜅 and 𝑠.
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Figure 1: Global Determinacy Region for the HANKModel with a Taylor Rule

Note: Simulations run with 𝛽 = 0.99, 𝜎 = 2, 𝜅 = 0.1769, 𝜙 = 0.5, 𝑠 = 0.96 and 𝑝 = 1. The blue region
above the dashed line corresponds to inverted aggregate demand logic case (𝜆𝜒 = 1), and where the
model possesses global determinacy. The red region below the dashed line results in the model being
locally indeterminate (BK condition violation).

Illustrating the HANK global indeterminacy problem. To illustrate the global de-
terminacy challenge for the TR case, assume that the economy is initially in a transitory
state,8 {𝑥𝑡 ,𝜋𝑡} = {𝑥𝑇 ,𝜋𝑇}, and remains there with probability 𝑝 and transitions to the
absorbing PIR steady state with complementary probability 1− 𝑝. This transitory state
is driven by the preference shock described by (5). Hence, the HANK model can be

8. In other words, off of the positive interest rate steady state.
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Figure 2: Non-Uniqueness or Non-Existence of an MSV Solution in the HANK Model
(with Taylor Rule) in Transitory State

𝑥𝑇

𝜋𝑇

− 𝜇
𝜙

𝐴𝑆
𝐴𝐷𝑇𝑅,1

𝐴𝐷𝐸𝐿𝐵,1

𝐴𝐷𝑇𝑅,2

𝐴𝐷𝐸𝐿𝐵,2
PIR

ZIR

(a) HANK-C

𝑥𝑇

𝜋𝑇

− 𝜇
𝜙

𝐴𝑆

𝐴𝐷𝑇𝑅

𝐴𝐷𝐸𝐿𝐵

PIR

(b) HANK-P with IADL

Note: Figure shows AS (blue) and piecewise-linear AD (red) curves. Left panel shows the the problem
of non-existence and multiplicity of equilibria with varying shock sizes under HANK-C calibration.
Right panel shows equilibrium uniqueness under the inverted aggregate demand.

expressed using aggregate demand (𝐴𝐷) and aggregate supply (𝐴𝑆) schedules:

𝜋𝑇 =


1−𝑝𝛿
�̂�(𝑝−𝜙)𝑥

𝑇 − 𝜀𝑇

�̂�(𝑝−𝜙) 𝐴𝐷𝑇𝑅 ,

1−𝑝𝛿
𝑝�̂�

𝑥𝑇 − 𝜇
𝑝 − 𝜀𝑇

𝑝�̂�
𝐴𝐷𝐸𝐿𝐵 ,

(11)

𝜋𝑇 =
𝜅

1 − 𝑝𝛽
𝑥𝑇 𝐴𝑆. (12)

Figure 2 plots the 𝐴𝐷 and 𝐴𝑆 schedules for the tractable HANK model. Subfigure 2a
shows the issue of MSV solution multiplicity (shown for 𝐴𝐷1-𝐴𝑆) or non-existence
(shown for 𝐴𝐷2-𝐴𝑆) under HANK-C. For small realisations of the shock, 𝐴𝐷 inter-
sects 𝐴𝑆 twice – a case of multiple MSV solutions or incompleteness in the terminol-
ogy of Gourieroux, Laffont, and Monfort (1980) and Ascari and Mavroeidis (2022).
Conversely, for sufficiently large negative realisations of 𝜀𝑇 , no MSV solution exists
since neither 𝐴𝐷𝑇𝑅,2, 𝐴𝐷𝐸𝐿𝐵,2 intersect 𝐴𝑆.9 If monetary policy is passive, such that
the slope of 𝐴𝐷𝑇𝑅 is flatter than 𝐴𝑆, then there exists at least one MSV solution. But,
to reiterate, this violates local determinacy; corresponding to the red region below the
𝜆𝜒 = 1 dashed line in Figure 1.

9. Note that in Figure 2 we set 𝑝 to be sufficiently small. If 𝑝 is high enough, then 𝐴𝐷𝑇𝑅 becomes
upward sloping. However, qualitatively, the MSV solution problem remains.
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Conversely, Subfigure 2b plots 𝐴𝐷 and 𝐴𝑆 for the HANK-P model under IADL,
showing the existence of a unique MSV solution. No matter the size of the shock there
always exists a unique MSV solution, and since the 𝐴𝐷 is inverted there is no BK con-
dition violation for a passive monetary policy rule in the unconstrained regime. Thus,
Subfigure 2b corresponds to the blue region above the 𝜆𝜒 = 1 dashed line in Figure 1.

2.2 HANK with a Robust Real Rate Rule

We have previously shown that global determinacy is achieved in a tractable HANK
model under IADL. This, however, implies cumbersome restrictions on the monetary
policy feedback coefficients; monetary policy has to respond passively to inflation. Be-
low we show that this problem can be overcome by a central bank adopting a Robust
Real Rate rule (RR) as in Holden (2024).

The RR takes the following form:

𝑖𝑡 = max{−𝜇, 𝑟𝑡 + 𝜙𝜋𝑡}. (13)

Combined with the Fisher equation absent the ELB, this yields:

𝑟𝑡 + E𝑡𝜋𝑡+1 = 𝑟𝑡 + 𝜙𝜋𝑡 =⇒ E𝑡𝜋𝑡+1 = 𝜙𝜋𝑡 ,

which implies a unique non-explosive solution with 𝜋𝑡 = 0 if 𝜙 > 1, which represents
the key property of the rule.10 Here, we emphasise the robustness of the rule in the
sense that it implies determinacy with active monetary policy regardless of the form
of the aggregate demand condition. With the RR, aggregate demand or the aggregate
Euler equation is irrelevant for the determination of inflation or the output gap; and
hence it also has no bearing on satisfaction of the BK conditions. Thus, with the RR,
we need only concern ourselves with having a unique MSV solution, which leads us to
Proposition 2:

Proposition 2 The tractable HANK model with a Robust Real Rate rule, as in Equations
(1), (2), and (13), satisfies global determinacy if it concurrently satisfies local determinacy
(Blanchard-Kahn conditions) and if it possesses a unique minimum state variable solution.
The latter of which holds if �̂� < 0 and 0 < 𝛿 < 1.

10. This of course implies that the real interest rate adjusts in response to the preference shocks, 𝑟𝑡 =
�̂�−1𝜀𝑡 . For further discussion on the robustness properties of this rule, recommend reading Holden
(2024).

11



Figure 3: Global Determinacy Region for the HANK Model with a Robust Real Rate
Rule

Note: Simulations run with 𝛽 = 0.99, 𝜎 = 2, 𝜅 = 0.1769, 𝜙 = 2, 𝑠 = 0.96 and 𝑝 = 1. The blue region
above the dashed line corresponds to inverted aggregate demand logic case (𝜆𝜒 = 1), and where the
model possesses global determinacy. The yellow region below the dashed line results in the model not
possessing a unique minimum state variable solution.

Proof: Appendix A.2.

An [active] RR ensures that the MSV solution to the model is unique and locally
determinate as long as IADL holds. As mentioned above, aggregate demand is unim-
portant for the dynamics of themodel when the interest rate is unconstrained; inflation
and output gaps remain closed as long as the central bank is able to accommodate all
demand shock by adjusting the real rate.

When the demand shocks are large enough to bring the economy to the ELB, ag-
gregate demand becomes important in pinning down equilibrium outcomes. Normal
aggregate demand logic, �̂� > 0, implies that deflation and real rate increases at the
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Figure 4: Non-Uniqueness or Non-Existence of an MSV Solution in the HANK Model
(with Robust Real Rate Rule) in Transitory State

𝑥𝑇

𝜋𝑇

𝐴𝑆

𝐴𝐷𝑅𝑅

𝐴𝐷𝐸𝐿𝐵

𝑥

PIRZIR

(a) Without IADL (�̂� > 0)

𝑥𝑇

𝜋𝑇

𝐴𝑆

𝐴𝐷𝑅𝑅

𝐴𝐷𝐸𝐿𝐵

𝑥

PIR

(b) With IADL (�̂� < 0)

Note: Figure shows AS (blue) and piecewise-linear AD (red) curves with Robust Real Rate rule. Left
panel shows the the problem of non-existence and multiplicity of equilibria with varying shock sizes
with normal aggregate demand. Right panel shows equilibrium uniqueness under the inverted aggre-
gate demand. 𝑥 = 𝜇�̂�/(1 − 𝑝𝛿)

ELB lead to a decline in output, which leads to further deflation forming a deflationary
spiral. This is the source of equilibrium non-existence at the ELB in NK models when
shocks are large enough.

Under IADL, however, increases in real rates do not lead to a decline in real activity.
On the contrary, the rising real rates due to deflation at the ELB imply higher economic
activity and thus higher inflation. Thus, the agents do not expect deflation in equilib-
rium at the ELB and deflationary spirals never materialise. Similar to the TR case, we
plot the global determinacy region for the RR case in Figure 3. The blue region above
the dashed 𝜆𝜒 = 1 line corresponds to the IADL case and thus satisfaction of global
determinacy requirements, where as the yellow region below the dashed line is where
only local determinacy holds but with no or multiple MSV solutions.

To illustrate non-existence or multiplicity of MSV solutions in the HANK model
with RR, we again write the model in terms of 𝐴𝐷 and 𝐴𝑆 schedules:

𝜋𝑇 =


0 𝐴𝐷𝑅𝑅 ,

(1−𝑝𝛿)
𝑝�̂�

𝑥𝑇 − 𝜇
𝑝 − 𝜀𝑇

𝑝�̂�
𝐴𝐷𝐸𝐿𝐵 ,

(14)
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and where 𝐴𝑆 is given as before in Equation (12). We then plot the relations in Figure
4. Figure 4a shows the aggregate demand and supply schedules in the transitory state
under normal aggregate demand logic. For high values of 𝑝, 𝐴𝐷𝐸𝐿𝐵 is flatter than 𝐴𝑆

which implies that there exists a ZIR and a PIR equilibria.11 Figure 4a thus corresponds
to the yellow region below 𝜆𝜒 = 1 in Figure 3.

Subfigure 4b shows the IADL case where aggregate demand is downward sloping
when monetary policy is constrained. The intersection of 𝐴𝐷𝐸𝐿𝐵 lies to the right from
the cut-off 𝑥 and is thus inconsistent with the ELB constraint.12 Since monetary policy
given by RR is active – satisfying local determinacy – themodel also possesses a unique
MSV solution and is thus globally determinate. Hence, Subfigure 4b corresponds to the
blue region above 𝜆𝜒 = 1 in Figure 3.

3 Conclusion

We show that the tractable HANK model, when subject to the ELB, fails to yield a
unique MSV solution if calibrated to match empirical evidence on cyclical income in-
equality. We refer to this as a failure of global determinacy, defined as satisfying both
local determinacy and uniqueness of the MSV solution. However, global determinacy
can be restored under empirically implausible values of the intertemporal elasticity of
substitution, especially when the model is also calibrated to resolve the forward guid-
ance puzzle — thus intensifying the Catch-22 highlighted by Bilbiie (2020) and others.

We also show that global determinacy can be achieved under a passive Taylor rule
if the economy features a high share of HtM households with strongly procyclical in-
comes (an inverted aggregate demand curve). This reverses the standard relationship
between real interest rates and consumption, ruling out self-fulfilling deflationary spi-
rals at the ELB and introducing a novel Catch-22 not previously discussed in the liter-
ature.

Finally, we find that global determinacy with an inverted demand curve can coex-
ist with active monetary policy if the central bank adopts a Robust Real Rate rule, as
proposed by Holden (2024).

11. To find this value, solve the following inequality for 𝑝: 𝜅
1−𝛽𝑝 >

1−𝑝𝛿
𝑝�̂�

=⇒ 𝛽𝛿𝑝2−𝑝(𝛽+𝛿+𝜅�̂�)+1 < 0.
The inequality is quadratic in 𝑝 and implies that if 𝑝 is large enough,𝐴𝐷𝐸𝐿𝐵 is upward-sloping andflatter
than 𝐴𝑆.
12. The 𝐴𝐷𝐸𝐿𝐵 and 𝐴𝑆 curves intersect at 𝑥★ = − 𝜇

Ψ
, whereΨ ≡ (𝑝𝛿−1)(1−𝑝𝛽)+𝑝�̂�𝜅

�̂�(1−𝑝𝛽) . Under IADL, it always
holds that 𝑥★ > 𝑥.

14



References

Acharya, Sushant, and Jess Benhabib. 2024. Global Indeterminacy in HANK Economies.
Working Paper, Working Paper Series 32462. National Bureau of Economic Re-
search. https://doi.org/10.3386/w32462. http://www.nber.org/papers/w32
462.

Angeletos, George-Marios, and Chen Lian. 2018. “Forward Guidance without Com-
mon Knowledge.” American Economic Review 108 (9): 2477–2512.

. 2023. “Determinacy without the Taylor Principle.” Journal of Political Economy
131 (8): 2125–2164. https://doi.org/10.1086/723634.

Armenter, Roc. 2017. “The Perils of Nominal Targets.” The Review of Economic Studies
85 (1): 50–86. https://doi.org/10.1093/restud/rdx001.

Ascari, Guido, and Sophocles Mavroeidis. 2022. “The Unbearable Lightness of Equi-
libria in a Low Interest Rate Environment.” Journal of Monetary Economics 27:1–27.

Ascari,Guido, SophoclesMavroeidis, andNigelMcClung. 2023. “Coherencewithout
Rationality at the Zero Lower Bound.” Journal of Economic Theory 214:105745. http
s://doi.org/https://doi.org/10.1016/j.jet.2023.105745.
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A Existence and Uniqueness of an MSV Solution

A.1 Taylor-type rule

We now outline a sketch of verifying existence and uniqueness of a MSV solution –
whichwe refer to as global determinacy – for the referenceHANKmodelwith a Taylor-
type rule. Following (3), we refer to 𝑖𝑡 = −𝜇 as the case where the ELB binds (𝑠𝑡 = 0),
and 𝑖𝑡 > −𝜇𝑡 as the unconstrained case (𝑠𝑡 = 1). The model can then be written as a
system of difference equations:

𝑨𝑠𝑡𝒀𝑡 + 𝑩𝑠𝑡𝒀𝑡+1|𝑡 + 𝑪𝑠𝑡𝑿𝑡 + 𝑫𝑠𝑡𝑿𝑡+1|𝑡 = 0, (15)

where 𝒀 and 𝑿 denote vectors of endogenous and exogenous variables, respectively.
We thus have:[

1 �̂�𝜙

−𝜅 1

]
︸      ︷︷      ︸

𝑨1

[
𝑥𝑡

𝜋𝑡

]
+
[
−𝛿 −�̂�
0 −𝛽

]
︸      ︷︷      ︸

𝑩1

[
E𝑡𝑥𝑡+1
E𝑡𝜋𝑡+1

]
+
[
−1 0
0 0

]
︸   ︷︷   ︸

𝑪1

[
𝜀𝑡
𝜇

]
= 0, for 𝑖𝑡 > −𝜇. (16)

and [
1 0
−𝜅 1

]
︸   ︷︷   ︸

𝑨0

[
𝑥𝑡

𝜋𝑡

]
+
[
−𝛿 −�̂�
0 −𝛽

]
︸      ︷︷      ︸

𝑩0

[
E𝑡𝑥𝑡+1
E𝑡𝜋𝑡+1

]
+
[
−1 −�̂�
0 0

]
︸      ︷︷      ︸

𝑪0

[
𝜀𝑡
𝜇

]
= 0, for 𝑖𝑡 = −𝜇, (17)

Assume that 𝜀𝑡 follows a 𝑘-state Markov process with 𝑘 = 2, where 𝑲 is a 𝑘-state
transition matrix,13 and where 𝑰𝑘 is an identity matrix with columns 𝒆𝑖 . Following
Theorem 1 from Gourieroux, Laffont, and Monfort (1980) (GLM) and AM, existence
and uniqueness of an MSV solution requires that the signs of det𝓐 𝐽 , 𝐽 ⊆ {1, ..., 𝑘} are
identical, where

13. 𝑲 has switching probabilities 𝑝 and 𝑞:

𝑲 =

[
𝑝 1 − 𝑝

1 − 𝑞 𝑞

]
.
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𝓐 𝐽1 = 𝑰2 ⊗ 𝑨1 + 𝑲 ⊗ 𝑩1 𝐽1 = {1, 2} (PIR,PIR),
𝓐 𝐽2 = 𝒆1𝒆⊤1 ⊗ 𝑨0 + 𝒆1𝒆⊤1 𝑲 ⊗ 𝑩0 + 𝒆2𝒆⊤2 ⊗ 𝑨1 + 𝒆2𝒆⊤2 𝑲 ⊗ 𝑩1 𝐽2 = {2} (ZIR,PIR),
𝓐 𝐽3 = 𝒆1𝒆⊤1 ⊗ 𝑨1 + 𝒆1𝒆⊤1 𝑲 ⊗ 𝑩1 + 𝒆2𝒆⊤2 ⊗ 𝑨0 + 𝒆2𝒆⊤2 𝑲 ⊗ 𝑩0 𝐽3 = {1} (PIR,ZIR),
𝓐 𝐽4 = 𝑰2 ⊗ 𝑨0 + 𝑲 ⊗ 𝑩0, 𝐽4 = ∅ (ZIR,ZIR),

(18)

where 𝐽 denotes whether the ELB constraint is slack or not for the exogenous states of 𝜀𝑡 . Specifically, 𝐽1 = {1, 2} implies
that the constraints are slack in both states (𝑠𝑖 = 1 for 𝑖 = {1, 2}). 𝐽2 = {2} implies that the constraint is slack in state
𝑖 = 2 but binding in state 𝑖 = 1 (𝑠2 = 1 and 𝑠1 = 0). 𝐽3 = {1} implies that the constraint is slack in state 𝑖 = 1 but binding
in state 𝑖 = 2 (𝑠1 = 1 and 𝑠2 = 0). 𝐽4 = ∅ implies that the constraint is binding in both states (𝑠 = 0 for 𝑖 = {1, 2}).14

To analytically derive (18), start by writing the Euler equation using the two-state Markov chain process for 𝜀𝑡 and
𝑲:

𝒙 = 𝛿𝑲𝒙 − �̂� (𝑹 − 𝑲𝝅) + 𝜺,

and then rearrange:
(𝑰 − 𝛿𝑲) 𝒙 = −�̂� (𝑹 − 𝑲𝝅) + 𝜺. (19)

While the NKPC can be written as:
𝝅 = 𝛽𝑲𝝅 + 𝜅𝒙 ,

and multiplying it by (𝑰 − 𝛿𝑲) yields:

(𝑰 − 𝛿𝑲)𝝅 = (𝑰 − 𝛿𝑲) 𝛽𝑲𝝅 + 𝜅 (𝑰 − 𝛿𝑲) 𝒙. (20)

14. Note that since we only have one inequality constraint in the model, we need not use the Kronecker product for computing the matrices in
(18).
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Combining (19) and (20) together gives:

(𝑰 − 𝛿𝑲)𝝅 = (𝑰 − 𝛿𝑲) 𝛽𝑲𝝅 + 𝜅
[
−�̂� (𝑹 − 𝑲𝝅) + 𝜺

][
(𝑰 − 𝛿𝑲) − 𝛽 (𝑰 − 𝛿𝑲)𝑲 − 𝜅�̂�𝑲

]︸                                     ︷︷                                     ︸
≡𝑸

𝝅 = 𝜅
(
−�̂�𝑹 + 𝜺

)
The Taylor rule is

𝑹 = max
{
−𝜇𝜾2, 𝜙𝝅

}
,

and substituting into the equation above gives:

𝑸𝝅 = −𝜅�̂�max
{
−𝜇𝜾2, 𝜙𝝅

}
+ 𝜅𝜺.

Therefore, we have:

𝓐 𝐽1 = 𝑸 + 𝜅�̂�𝜙𝑰 , (21)

𝓐 𝐽2 = 𝑸 + 𝜅�̂�𝜙𝒆2𝒆⊤2 , (22)

𝓐 𝐽3 = 𝑸 + 𝜅�̂�𝜙𝒆1𝒆⊤1 , (23)

𝓐 𝐽4 = 𝑸 . (24)
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Start with 𝓐 𝐽4 by expanding 𝑸:

𝑸 = (𝑰 − 𝛿𝑲) − 𝛽 (𝑰 − 𝛿𝑲)𝑲 − 𝜅�̂�𝑲

= (𝑰 − 𝛿𝑲) (𝑰 − 𝛽𝑲) − 𝜅�̂�𝑲

=

[
1 − 𝛿𝑝 −𝛿 (1 − 𝑝)

−𝛿 (1 − 𝑞) 1 − 𝛿𝑞

] [
1 − 𝛽𝑝 −𝛽 (1 − 𝑝)

−𝛽 (1 − 𝑞) 1 − 𝛽𝑞

]
− 𝜅�̂�

[
𝑝 1 − 𝑝

1 − 𝑞 𝑞

]
=

[
(1 − 𝛿𝑝) (1 − 𝛽𝑝) + 𝛿 (1 − 𝑝) 𝛽 (1 − 𝑞) − 𝜅�̂�𝑝 (1 − 𝛿𝑝) (−𝛽 (1 − 𝑝)) + −𝛿 (1 − 𝑝) (1 − 𝛽𝑞) − 𝜅�̂� (1 − 𝑝)

−𝛿 (1 − 𝑞) (1 − 𝛽𝑝) + (1 − 𝛿𝑞) (−𝛽 (1 − 𝑞)) − 𝜅�̂� (1 − 𝑞) −𝛿 (1 − 𝑞) (−𝛽 (1 − 𝑝)) + (1 − 𝛿𝑞) (1 − 𝛽𝑞) − 𝜅�̂�𝑞

]
=

[
(1 − 𝛿) (1 − 𝛽𝑝) + 𝛿 (1 − 𝑝) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂�𝑝 −𝛽 (1 − 𝛿) (1 − 𝑝) − 𝛿 (1 − 𝑝) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂� (1 − 𝑝)

−𝛽 (1 − 𝛿) (1 − 𝑞) − 𝛿 (1 − 𝑞) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂� (1 − 𝑞) (1 − 𝛿) (1 − 𝛽𝑞) + 𝛿 (1 − 𝑞) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂�𝑞

]
.

Thus, we can write 𝓐 𝐽1 as:

𝓐 𝐽1 =

[
(1 − 𝛿) (1 − 𝛽𝑝) + 𝛿 (1 − 𝑝) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂�𝑝 + 𝜅�̂�𝜙 −𝛽 (1 − 𝛿) (1 − 𝑝) − 𝛿 (1 − 𝑝) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂� (1 − 𝑝)
−𝛽 (1 − 𝛿) (1 − 𝑞) − 𝛿 (1 − 𝑞) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂� (1 − 𝑞) (1 − 𝛿) (1 − 𝛽𝑞) + 𝛿 (1 − 𝑞) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂�𝑞 + 𝜅�̂�𝜙

]
,

and so the determinant is

det𝓐 𝐽1 =
[
(1 − 𝛿) (1 − 𝛽𝑝) + 𝛿 (1 − 𝑝) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂�𝑝 + 𝜅�̂�𝜙

] [
(1 − 𝛿) (1 − 𝛽𝑞) + 𝛿 (1 − 𝑞) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂�𝑞 + 𝜅�̂�𝜙

]
−
[
−𝛽 (1 − 𝛿) (1 − 𝑝) − 𝛿 (1 − 𝑝) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂� (1 − 𝑝)

] [
−𝛽 (1 − 𝛿) (1 − 𝑞) − 𝛿 (1 − 𝑞) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂� (1 − 𝑞)

]
= 𝑎1,1 − 𝑎1,2.
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The first term on the RHS, 𝑎1,1,

𝑎1,1 =
[
(1 − 𝛿) (1 − 𝛽𝑝) + 𝛿 (1 − 𝑝) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂�𝑝 + 𝜅�̂�𝜙

]
×
[
(1 − 𝛿) (1 − 𝛽𝑞) + 𝛿 (1 − 𝑞) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂�𝑞 + 𝜅�̂�𝜙

]
,

after much algebraic manipulation can be written as:

𝑎1,1 =
[
(1 − 𝛿) (1 − 𝛽𝑝) + (1 − 𝑝)

[
𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]
+ 𝜅�̂�

(
𝜙 − 1

) ]
[(1 − 𝛿) (1 − 𝛽𝑞)]

+ (1 − 𝛿) (1 − 𝛽𝑝) (1 − 𝑞)
[
𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]
+ (1 − 𝑝) (1 − 𝑞)

[
𝛽 (1 − 𝛿) + 𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]2
+ (1 − 𝑝) (1 − 𝑞) [𝛽 (1 − 𝛿)]2

− 2 (1 − 𝑝) (1 − 𝑞)
{
[𝛽 (1 − 𝛿)]2 + 𝛿𝛽 (1 − 𝛿) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] + 𝛽 (1 − 𝛿)𝜅�̂�

}
+ 𝜅�̂�

(
𝜙 − 1

)
(1 − 𝑞)

[
𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]
+ (1 − 𝛿) (1 − 𝛽𝑝)𝜅�̂�

(
𝜙 − 1

)
+ (1 − 𝑝)

[
𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]
𝜅�̂�

(
𝜙 − 1

)
+
[
𝜅�̂�

(
𝜙 − 1

) ]2
.

The second term is, more simply,

𝑎1,2 = (1 − 𝑝) (1 − 𝑞)
[
𝛽 (1 − 𝛿) + 𝛿 [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] + 𝜅�̂�

]2
.
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The difference between 𝑎1,1 and 𝑎1,2 is:[
(1 − 𝛿) (1 − 𝛽𝑝) + (1 − 𝑝)

[
𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]
+ 𝜅�̂�

(
𝜙 − 1

) ]
(1 − 𝛿) (1 − 𝛽𝑞)

+ (1 − 𝛿) (1 − 𝛽𝑝) (1 − 𝑞)
[
𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]
+ (1 − 𝑝) (1 − 𝑞) [𝛽 (1 − 𝛿)]2

− 2 (1 − 𝑝) (1 − 𝑞)
{
[𝛽 (1 − 𝛿)]2 + 𝛿𝛽 (1 − 𝛿) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝛽 (1 − 𝛿)𝜅�̂�

}
+ 𝜅�̂�

(
𝜙 − 1

)
(1 − 𝑞)

[
𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]
+ (1 − 𝛿) (1 − 𝛽𝑝)𝜅�̂�

(
𝜙 − 1

)
+ (1 − 𝑝)

[
𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]
𝜅�̂�

(
𝜙 − 1

)
=𝜅�̂�

[
(1 − 𝛿) (1 − 𝛽) + 𝜅�̂�

(
𝜙 − 1

) ] [ 𝛿 (2 − 𝑝 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽)
𝜅�̂�

+ 1 − 𝑝 − 𝑞 + (1 − 𝛿) (1 − 𝛽𝑞 − 𝛽𝑝 + 𝛽)
𝜅�̂�

+ 𝜙

]
.

(25)

Then proceed with 𝓐 𝐽2 :

𝓐 𝐽2 = 𝑸 + 𝜅�̂�𝜙𝒆2𝒆⊤2

=

[
(1 − 𝛿) (1 − 𝛽𝑝) + 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑝 −𝛽 (1 − 𝛿) (1 − 𝑝) − 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑝)

−𝛽 (1 − 𝛿) (1 − 𝑞) − 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑞) (1 − 𝛿) (1 − 𝛽𝑞) + 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑞 + 𝜅�̂�𝜙

]
,

where the determinant is:

det𝓐 𝐽2 =
[
(1 − 𝛿) (1 − 𝛽𝑝) + 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑝

] [
(1 − 𝛿) (1 − 𝛽𝑞) + 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑞 + 𝜅�̂�𝜙

]
−
[
−𝛽 (1 − 𝛿) (1 − 𝑝) − 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑝)

] [
−𝛽 (1 − 𝛿) (1 − 𝑞) − 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑞)

]
= 𝑎2,1 − 𝑎2,2.
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Where, after algebraic manipulation we have:

𝑎2,1 = (1 − 𝛿)2 (1 − 𝛽𝑝) (1 − 𝛽𝑞) + (1 − 𝛿) (1 − 𝛽𝑝)
[
𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂� (1 − 𝑞)

]
+ (1 − 𝛿) (1 − 𝛽𝑝)𝜅�̂�

(
𝜙 − 1

)
+
[
𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑝

]
(1 − 𝛿) (1 − 𝛽𝑞)

+
[
𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑝

] [
𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂� (1 − 𝑞)

]
+
[
𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑝

]
𝜅�̂�

(
𝜙 − 1

)
,

and

𝑎2,2 = 𝛽2 (1 − 𝛿)2 (1 − 𝑝) (1 − 𝑞) + [𝛽 (1 − 𝛿) (1 − 𝑝)]
[
𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂� (1 − 𝑞)

]
+
[
𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂� (1 − 𝑝)

]
𝛽 (1 − 𝛿) (1 − 𝑞)

+
[
𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂� (1 − 𝑝)

] [
𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂� (1 − 𝑞)

]
.

This gives:

𝑎2,1 − 𝑎2,2 =
[ (
𝜅�̂�

)2 (
𝜙 − 1

)
+ 𝜅�̂� (1 − 𝛿) (1 − 𝛽)

] [ (1 − 𝛿) (1 − 𝛽𝑞 − 𝛽𝑝 + 𝛽)
𝜅�̂�

+ 𝛿 (2 − 𝑝 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽)
𝜅�̂�

+ 1 − 𝑝 − 𝑞

]
− 𝜅�̂�𝜙 (1 − 𝑞)

[
𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂� + 𝛽 (1 − 𝛿)

]
.

(26)

Similarly, for 𝓐 𝐽3 :

𝓐 𝐽3 = 𝑸 + 𝜅�̂�𝜙𝒆1𝒆⊤1

=

[
(1 − 𝛿) (1 − 𝛽𝑝) + 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑝 + 𝜅�̂�𝜙 −𝛽 (1 − 𝛿) (1 − 𝑝) − 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑝)
−𝛽 (1 − 𝛿) (1 − 𝑞) − 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑞) (1 − 𝛿) (1 − 𝛽𝑞) + 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑞

]
.
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det𝓐 𝐽3 is:

det𝓐 𝐽3 =
[
(1 − 𝛿) (1 − 𝛽𝑝) + 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑝 + 𝜅�̂�𝜙

] [
(1 − 𝛿) (1 − 𝛽𝑞) + 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑞

]
−
[
−𝛽 (1 − 𝛿) (1 − 𝑝) − 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑝)

] [
−𝛽 (1 − 𝛿) (1 − 𝑞) − 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑞)

]
= 𝑎3,1 − 𝑎3,2,

and – again – after algebraic manipulation:

𝑎3,1 = (1 − 𝛿)2 (1 − 𝛽𝑝) (1 − 𝛽𝑞) + (1 − 𝛿) (2 − 𝑝 − 𝑞 − 𝛽𝑝 − 𝛽𝑞 + 2𝛽𝑝𝑞) 𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽)
+ (1 − 𝛿) (1 − 𝛽𝑝)

(
−𝜅�̂�𝑞

)
+ 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽)

− 𝜅�̂�𝛿 [(1 − 𝑝) 𝑞 + (1 − 𝑞) 𝑝] (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽)
+
(
−𝜅�̂�𝑝

)
(1 − 𝛿) (1 − 𝛽𝑞)

+
(
𝜅�̂�𝑝

) (
𝜅�̂�𝑞

)
+ 𝜅�̂�𝜙 (1 − 𝛿) (1 − 𝛽𝑞)
+ 𝜅�̂�𝜙𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽)
+ 𝜅�̂�𝜙

(
−𝜅�̂�𝑞

)
,

and

𝑎3,2 =
[
−𝛽 (1 − 𝛿) (1 − 𝑝) − 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑝)

] [
−𝛽 (1 − 𝛿) (1 − 𝑞) − 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑞)

]
= 𝛽2 (1 − 𝛿)2 (1 − 𝑝) (1 − 𝑞) + 𝛽 (1 − 𝛿) (1 − 𝑝) 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝛽 (1 − 𝛿) (1 − 𝑝)𝜅�̂� (1 − 𝑞)
+ 𝛽 (1 − 𝛿) (1 − 𝑞) 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽)
+ 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽)𝜅�̂� (1 − 𝑞) + 𝜅�̂� (1 − 𝑝)

[
𝛽 (1 − 𝛿) (1 − 𝑞) + 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂� (1 − 𝑞)

]
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𝑎3,1 − 𝑎3,2 = 𝜅�̂� (1 − 𝛿) (1 − 𝛽) −
(
𝜅�̂�

)2 [ (1 − 𝛿) (1 − 𝛽𝑞 − 𝛽𝑝 + 𝛽)
𝜅�̂�

+
𝛿 (2 − 𝑝 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽)

𝜅�̂�
+ 1 − 𝑝 − 𝑞 + 𝜙

]
+ 𝜅�̂�𝜙 (1 − 𝑞)

[
𝛽 (1 − 𝛿) + 𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]
.

(27)

Finally, go back and use 𝑸 to write 𝓐 𝐽4 :
𝓐 𝐽4 = 𝑸 ,

with

det𝓐 𝐽4 =
[
(1 − 𝛿) (1 − 𝛽𝑝) + 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑝

] [
(1 − 𝛿) (1 − 𝛽𝑞) + 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑞

]
−
[
−𝛽 (1 − 𝛿) (1 − 𝑝) − 𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑝)

] [
−𝛽 (1 − 𝛿) (1 − 𝑞) − 𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂� (1 − 𝑞)

]
= 𝑎4,1 − 𝑎4,2.

The first term 𝑎4,1 is:

𝑎4,1 = (1 − 𝛿) (1 − 𝛽𝑝) (1 − 𝛿) (1 − 𝛽𝑞) + (1 − 𝛿) (1 − 𝛽𝑝)
[
𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂� (1 − 𝑞)

]
− (1 − 𝛿) (1 − 𝛽𝑝)𝜅�̂� + (1 − 𝛿) (1 − 𝛽𝑞)

[
𝛿 (1 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂� (1 − 𝑝)

]
− (1 − 𝛿) (1 − 𝛽𝑞)𝜅�̂�

+ 𝛿 (1 − 𝑝) [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] − 𝜅�̂�𝑝
[
𝛿 (1 − 𝑞) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) − 𝜅�̂�𝑞

]
,

and the second term 𝑎4,2 is:

𝑎4,2 = 𝛽 (1 − 𝛿) (1 − 𝑝) 𝛽 (1 − 𝛿) (1 − 𝑞) + 2𝛽 (1 − 𝛿) (1 − 𝑞) (1 − 𝑝)
[
𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]
+ (1 − 𝑞) (1 − 𝑝)

[
𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]2
.

With

𝑎4,1 − 𝑎4,2 =
[
−
(
𝜅�̂�

)2 + 𝜅�̂� (1 − 𝛿) (1 − 𝛽)
] [ (1 − 𝛿) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽)

𝜅�̂�
+ 𝛿 (2 − 𝑞 − 𝑝) (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽)

𝜅�̂�
+ 1 − 𝑞 − 𝑝

]
. (28)
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Given the expressions in (18), we only need to ensure that the signs of det𝓐 𝐽1 and
det𝓐 𝐽4 are identical:

det𝓐 𝐽1 = 𝜅�̂�
[
(1 − 𝛿) (1 − 𝛽) + 𝜅�̂�

(
𝜙 − 1

) ] (
𝜙 − 𝜗

)
,

det𝓐 𝐽2 =

[ (
𝜅�̂�

)2 (
𝜙 − 1

)
+ 𝜅�̂� (1 − 𝛿) (1 − 𝛽)

]
(−𝜗)

− 𝜅�̂�𝜙 (1 − 𝑞)
[
𝛿 [1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽] + 𝜅�̂� + 𝛽 (1 − 𝛿)

]
,

det𝓐 𝐽3 =

[
𝜅�̂� [(1 − 𝛿) (1 − 𝛽)] −

(
𝜅�̂�

)2] (
𝜙 − 𝜗

)
+ 𝜅�̂�𝜙 (1 − 𝑞)

[
𝛽 (1 − 𝛿) + 𝛿 (1 − 𝛽𝑝 − 𝛽𝑞 + 𝛽) + 𝜅�̂�

]
,

det𝓐 𝐽4 =

[
−
(
𝜅�̂�

)2 + 𝜅�̂� (1 − 𝛿) (1 − 𝛽)
]
(−𝜗) ,

where
𝜗 ≡ 𝑝 + 𝑞 − 1 − [(1 − 𝛿) + 𝛿 (2 − 𝑝 − 𝑞)] (1 − 𝛽𝑞 − 𝛽𝑝 + 𝛽)

𝜅�̂�
.

det𝓐 𝐽1 is trivially positive given �̂� < 0 and 𝜙 < 𝜗. Similarly det𝓐 𝐽4 is trivially
positive.

When 𝑞 = 1, the determinants simplify to

det𝓐 𝐽1 =

[ (
𝜅�̂�

)2 (
𝜙 − 1

)
+ 𝜅�̂� (1 − 𝛿) (1 − 𝛽)

] (
𝜙 − 𝜗

)
, (29)

det𝓐 𝐽2 =

[ (
𝜅�̂�

)2 (
𝜙 − 1

)
+ 𝜅�̂� (1 − 𝛿) (1 − 𝛽)

]
(−𝜗) , (30)

det𝓐 𝐽3 =

[
𝜅�̂� [(1 − 𝛿) (1 − 𝛽)] −

(
𝜅�̂�

)2] (
𝜙 − 𝜗

)
, (31)

det𝓐 𝐽4 =

[
−
(
𝜅�̂�

)2 + 𝜅�̂� (1 − 𝛿) (1 − 𝛽)
]
(−𝜗) , (32)

and
𝜗 ≡ 𝑝 − (1 − 𝛿𝑝) (1 − 𝛽𝑝)

𝜅�̂�
.

As documented in AM, for standard calibrations of the RANK model, these deter-
minants have different signs and thus the RANK model, when subject to an occasion-
ally binding ELB constraint, generally does not possess a unique MSV solution. In the
language of Gourieroux, Laffont, and Monfort (1980) and AM, this is referred to as a
violation of coherency and completeness. For simplicity, we use the terms existence
and uniqueness instead of coherency and completeness, respectively.
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Proof for Proposition 1. To check the signs for the HANK model, and with 𝛿 and �̂�

given in (4), we have to cover three cases:

1. When �̂� < 0, we have 1 − 𝜆𝜒 < 0 and thus 𝜒 > 1
𝜆 > 1, which implies that 𝛿 < 1.

2. When �̂� > 0, 𝜒 < 1
𝜆 . If 1 < 𝜒 < 1

𝜆 , then 𝛿 > 1.

3. When �̂� > 0, 𝜒 < 1
𝜆 . If 𝜒 < 1, then 𝛿 < 1.

Case 1 (�̂� < 0 and 𝛿 < 1): If �̂� < 0, this implies 𝛿 < 1, and so

𝜗 ≡ 𝑝 − (1 − 𝛿𝑝) (1 − 𝛽𝑝)
𝜅�̂�

> 𝑝.

This implies that

det𝓐 𝐽4 =

[
−
(
𝜅�̂�

)2 + 𝜅�̂� (1 − 𝛿) (1 − 𝛽)
]

︸                                ︷︷                                ︸
<0

(−𝜗)︸︷︷︸
<0

> 0.

Then, for det𝓐 𝐽3 to be positive, we require

𝜙 − 𝜗 < 0 =⇒ 𝛿𝑝 < 1 +
𝜅�̂�

(
𝜙 − 𝑝

)
1 − 𝛽𝑝

.

This implies that, for det𝓐 𝐽1 to be positive, we need(
𝜅�̂�

)2 (
𝜙 − 1

)
+ 𝜅�̂� (1 − 𝛿) (1 − 𝛽) < 0,

=⇒
𝜅�̂�

(
𝜙 − 1

)
1 − 𝛽

+ 1 > 𝛿.

This implies that:

det𝓐 𝐽2 =

[ (
𝜅�̂�

)2 (
𝜙 − 1

)
+ 𝜅�̂� (1 − 𝛿) (1 − 𝛽)

]
︸                                        ︷︷                                        ︸

<0

(−𝜗)︸︷︷︸
<0

> 0.

■
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Case 2 (�̂� > 0, 1 < 𝜒 < 1
𝜆 , and 𝛿 > 1): If �̂� > 0 and 𝛿 < 1, and also suppose 𝜙 > 1,

then:
𝜗 ≡ 𝑝 − (1 − 𝛿𝑝) (1 − 𝛽𝑝)

𝜅�̂�
< 𝑝.

That implies

det𝓐 𝐽1 =

[ (
𝜅�̂�

)2 (
𝜙 − 1

)
+ 𝜅�̂� (1 − 𝛿) (1 − 𝛽)

]
︸                                        ︷︷                                        ︸

>0

(𝜙 − 𝜗)︸  ︷︷  ︸
>0

> 0.

For det𝓐 𝐽2to be positive we require −𝜗 > 0, i.e., 𝜗 < 0, which then implies:

=⇒ 𝛿𝑝 < 1 − 𝜅�̂�𝑝

1 − 𝛽𝑝
.

This implies that

det𝓐 𝐽4 =

[
−
(
𝜅�̂�

)2 + 𝜅�̂� (1 − 𝛿) (1 − 𝛽)
]
(−𝜗)︸︷︷︸
>0

.

We need

−
(
𝜅�̂�

)2 + 𝜅�̂� (1 − 𝛿) (1 − 𝛽) > 0,

=⇒ 1 − 𝜅�̂�

(1 − 𝛽) > 𝛿.

Then

det𝓐 𝐽3 =

[
−
(
𝜅�̂�

)2 + 𝜅�̂� (1 − 𝛿) (1 − 𝛽)
]
(𝜙 − 𝜗)︸  ︷︷  ︸

>0

> 0, if 1 − 𝜅�̂�

(1 − 𝛽) > 𝛿.

■
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Case 3 (�̂� > 0, 𝜒 < 1, and 𝛿 < 1): If �̂� > 0 and 𝛿 > 1 with 𝜙 > 1, then we cannot con-
clude anything about about 𝜗, and so the signs of det𝓐 𝐽3 and det𝓐 𝐽4 are ambiguous,

det𝓐 𝐽3 =

[
−
(
𝜅�̂�

)2 + 𝜅�̂� (1 − 𝛿) (1 − 𝛽)
]

︸                                ︷︷                                ︸
<0

[
𝜙 − 𝜗

]
,

det𝓐 𝐽4 =

[
−
(
𝜅�̂�

)2 + 𝜅�̂� (1 − 𝛿) (1 − 𝛽)
]

︸                                ︷︷                                ︸
<0

[−𝜗] .

We need 𝜙 − 𝜗 and −𝜗 to have the same sign. First, suppose they are both positive
(−𝜗 > 0) which implies

𝛿𝑝 < 1 − 𝜅�̂�𝑝

(1 − 𝛽𝑝)
and

𝛿𝑝 < 1 +
𝜅�̂�

(
𝜙 − 𝑝

)
(1 − 𝛽𝑝) .

Then det𝓐 𝐽3 and det𝓐 𝐽4 are negative. For det𝓐 𝐽1 and det𝓐 𝐽2 to both be negative,
we then need [ (

𝜅�̂�
)2 (

𝜙 − 1
)
+ 𝜅�̂� (1 − 𝛿) (1 − 𝛽)

]
< 0,

=⇒ 1 +
𝜅�̂�

(
𝜙 − 1

)
(1 − 𝛽) < 𝛿.

But this holds only for a sufficiently small 𝑝.
Secondly, suppose both 𝜙 − 𝜗 and −𝜗 are negative,

𝜙 − 𝜗 < 0,

=⇒ 𝑝 − (1 − 𝛿𝑝) (1 − 𝛽𝑝)
𝜅�̂�

> 𝜙,

=⇒ 𝛿𝑝 > 1 +
𝜅�̂�

(
𝜙 − 𝑝

)
(1 − 𝛽𝑝) .

30



Then we require (
𝜅�̂�

)2 (
𝜙 − 1

)
+ 𝜅�̂� (1 − 𝛿) (1 − 𝛽) > 0,

=⇒ 1 +
𝜅�̂�

(
𝜙 − 1

)
(1 − 𝛽) > 𝛿.

For the first case, compare

𝛿𝑝 < 1 −
𝜅�̂�𝑝

(1 − 𝛽𝑝) , and 𝑝 +
𝑝𝜅�̂�

(
𝜙 − 1

)
(1 − 𝛽) < 𝑝𝛿.

We need

1 − 𝜅�̂�𝑝

(1 − 𝛽𝑝) > 𝑝 +
𝑝𝜅�̂�

(
𝜙 − 1

)
(1 − 𝛽) ,

which is satisfied for small values of 𝑝 ∈ [0, 𝑝∗]. For the second case, compare

𝛿𝑝 > 1 +
𝜅�̂�

(
𝜙 − 𝑝

)
(1 − 𝛽𝑝) , and 𝑝 +

𝑝𝜅�̂�
(
𝜙 − 1

)
(1 − 𝛽) > 𝑝𝛿.

We need

𝑝 +
𝑝𝜅�̂�

(
𝜙 − 1

)
(1 − 𝛽) > 1 +

𝜅�̂�
(
𝜙 − 𝑝

)
(1 − 𝛽𝑝) ,

which is satisfied for large values of 𝑝 ∈ [𝑝∗, 1]. ■

A.2 Robust real rate rule

In order to write the unconstrained model in terms of {𝑥𝑡 ,𝜋𝑡}, we use the NKPC (2)
and (13) (with the Fisher equation) to write:

𝜋𝑡 =
𝜅

1 − 𝛽𝜙
𝑥𝑡 , (33)

𝜋𝑡 =
1
𝜙
E𝑡𝜋𝑡+1. (34)

However, in the ELB-constrained (𝑖𝑡 = −𝜇) regime we have:

𝑥𝑡 = 𝛿E𝑡𝑥𝑡+1 + �̂�(𝜇 + E𝑡𝜋𝑡+1) + 𝜀𝑡 , (35)

𝜋𝑡 = 𝛽E𝑡𝜋𝑡+1 + 𝜅𝑥𝑡 . (36)
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As before, we canwrite the system for the unconstrained regime in canonical form (15)
with: [

𝜅
𝛽𝜙−1 1
0 1

]
︸      ︷︷      ︸

𝑨1

[
𝑥𝑡

𝜋𝑡

]
+
[
0 0
0 − 1

𝜙

]
︸    ︷︷    ︸

𝑩1

[
E𝑡𝑥𝑡+1
E𝑡𝜋𝑡+1

]
+
[
0 0
0 0

]
︸ ︷︷ ︸

𝑪1

[
𝜀𝑡
𝜇

]
= 0, for 𝑖𝑡 > −𝜇. (37)

and the matrices for the constrained regime {𝑨0, 𝑩0, 𝑪0} are identical to those in (17).
As in Appendix A.1, we calculate the analytical expressions for the determinants of

matrices 𝓐 𝐽1 , 𝓐 𝐽2 , 𝓐 𝐽3 , and 𝓐 𝐽4 :

det𝓐 𝐽1 =
𝜅

𝛽𝜙 − 1

(
1 −

𝑞

𝜙

)
+
1 − 𝑞

𝜙
,

det𝓐 𝐽2 =
𝜅

𝛽𝜙 − 1
(1 − 𝛽𝑞) + 𝜅 + 𝛽(1 − 𝑞),

det𝓐 𝐽3 =
[
1 − 𝛿𝑝 − �̂�(1 − 𝑞)

] (
1 − 𝑞

𝜙

)
+
[
𝛿(1 − 𝑝) + �̂�𝑞

] (1 − 𝑞

𝜙

)
,

det𝓐 𝐽4 =
[
−(𝜅�̂�)2 + 𝜅�̂�(1 − 𝛿)(1 − 𝛽)

]
(−𝜗).

InA.1, we have shown that det𝓐 𝐽4 , which is equivalent across the two cases, is positive.
For 𝜙 > 1, det𝓐 𝐽1 is also positive.

Global indeterminacy even with a RR rule. Recall that in order for a unique MSV
solution to exist in a forward-looking dynamic model, the signs of the determinants of
(18)must all share the same sign. Given our canonical formmatrices (17) and (37), this
is straightforward to analytically verify. Moreover, as before, we only need to ensure
that the signs of det𝓐 𝐽1 and det𝓐 𝐽4 are the same. We also already know det𝓐 𝐽4

since the ELB-constrained regimes with the Taylor-type rule (3) and RR rule (13) are
identical.

So, constructing 𝓐 𝐽1 from (37) and finding the determinant yields

det𝓐 𝐽1 =

����� 𝜅
𝛽𝜙−1 1
− (1−𝑞)

𝜙 1 − 𝑞

𝜙

����� = 𝜅
𝛽𝜙 − 1

(
1 −

𝑞

𝜙

)
−

𝑞 − 1
𝜙

.

To simplify the analysis, assume that 𝑝 = 𝑞 = 1, which also allows us to reuse our result
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from (32). We thus compare the signs of:

det𝓐 𝐽1 =
𝜅(𝜙 − 1)
𝛽𝜙2 − 𝜙

,

det𝓐 𝐽4 = (𝛿 − 1)(𝛽 − 1) − �̂�𝜅.

Since 𝜙 > 1, we have that det𝓐 𝐽1 > 0. However, there appears to be a tension between
the sign of det𝓐 𝐽4 and the class ofHANKmodel one assumes, much likewith a Taylor-
type rule. If we assume a HANK-C model, then det𝓐 𝐽4 < 0 since 𝛿 > 1, and so
the model is not globally determinate. However, with a HANK-P model, in order for
det𝓐 𝐽4 > 0, we would need to satisfy the same condition as in (8). Recall that such
a condition required a high level of risk aversion, or equivalently, a very small IES –
neither of which are supported by empirical evidence.
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