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Abstract

The presence of an occasionally binding constraint due to the effective lower bound
(ELB) in New Keynesian models generally gives rise to multiple equilibria under ac-
tivemonetary policy. To restore uniqueness in themodel with an active Taylor rule, we
consider appropriate simple fiscal policy instruments. Without relaxing the assump-
tions of Ricardian equivalence, full information, and rational expectations, we show
that appropriate fiscal targeting rules ensure that New Keynesian models subject to
the ELB possess a unique solution.
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1 Introduction

The canonical New Keynesian (NK) model with an occasionally binding constraint aris-
ing from the effective lower bound (ELB), with full information and rational expectations
(FIRE) and an active Taylor rule1 (TR), possessesmultipleminimum state variable (MSV)
solutions. Thus, it is termed as “incomplete”. Furthermore, when subjected to significant
shocks, an MSV solution may not exist, rendering it “incoherent”. These crucial findings
were demonstrated in seminal works by Ascari andMavroeidis (2022) (AM) in a stochas-
tic environment with rational expectations and Holden (2023) under perfect foresight.

This paper, maintaining FIRE, demonstrates that simple Ricardian fiscal policy (FP)
ensures coherency and completeness. This holds robustly across shocks of varying sizes
and supports. Our key finding reveals that if FP is persistent and reactive to inflation and
output fluctuations, it guarantees a uniqueMSV solution, while also satisfying Blanchard-
Kahn (BK) local determinacy conditions. This paper identifies two critical properties for
achieving uniqueness of an MSV solution. Firstly, at the ELB, FP stabilises the economy
when monetary policy is constrained, establishing an equilibrium path. Secondly, a coun-
tercyclical rule-based FP eliminates belief-driven equilibria when it is sufficiently persis-
tent.

To underscore the significance of this paper – and the relevance of model coherency
and completeness – we contextualise the primary contributions of AM and the literature.
While previous studies often employed simplified approaches regarding shocks inmodels
with the ELB, such as assuming a singular structural shock or imposing rigid assumptions
on shock duration, AM consider multiple structural shocks and their serial occurrences
within a forward-looking dynamic model with FIRE. Although this paper abstracts from
multiple structural shocks, it examines the recurring structural shock scenario.

Building on the work of Gourieroux, Laffont, and Monfort (1980) (GLM), AM derive
two main results using a linearised equation system and endogenous regime switching.
Firstly, they demonstrate that achieving coherency in ELB-constrained NKmodels poses a
nontrivial challenge, particularly when the inflation coefficient in the TR exceeds unity or
when optimal monetary policy under discretion does not ensure coherency. Additionally,
AM identify conditions that restrict the support of stochastic shocks, necessary to ensure
model coherency. However, these support restrictions prove cumbersome, dependent on
model structural parameters and past realisations of state variables in backward-looking

1. An active Taylor rule is one which satisfies the Taylor principle.
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models. Secondly, even with support restrictions to ensure coherency, the model might
still exhibit multiple MSV solutions, potentially up to 2𝑘 solutions, where 𝑘 represents the
number of discrete shock states.

This concern extends beyond the conventional scope of the ELB literature, whichmainly
examined sunspot shocks or belief-driven fluctuations between steady states.2 However,
general conditions to ensuremodel coherency and completeness inmacroeconomic DSGE
literature remain limited, although recent papers have provided sufficiency conditions for
MSV equilibrium existence inNKmodels (Eggertsson, 2011; Christiano, Eichenbaum, and
Johannsen, 2018; Nakata, 2018; Nakata and Schmidt, 2019). Compared to this strand of
literature, this paper studies solution existence and uniqueness.

As highlighted in follow-up work, Ascari, Mavroeidis, andMcClung (2023) show that
multiplicity of MSV solutions emerges from the interplay between rational expectations
and the inherently nonlinear nature of the ELB constraint. While they focus on relaxing
FIRE assumptions, this paper maintains the FIRE framework and proposes alternative
mechanisms, specifically emphasising the role of simple Ricardian FP, to address issues
identified by AM.

Our objective is to offer qualitative results in resolving the problem of mulitiplicity of
MSV solutions using FP. Thus, our paper adds to the studies that explored fiscal policy, the
ELB, andmultiple equilibria interactions. Seminal work by Benhabib, Schmitt-Grohé, and
Uribe (2001) examined how Ricardian FP with active monetary policy leads to unique
convergence to a steady state equilibrium. However, convergence was not always to a
unique steady state and could include an unintended liquidity trap steady state. Benhabib,
Schmitt-Grohé, and Uribe (2002) extended this to establish convergence to a non-liquidity
trap steady state. Both studies assumed perfect foresight environments, while this paper
maintains FIRE.3

Our paper is closely related to the contributions of Schmidt (2016), Tamanyu (2021),
and Nakata and Schmidt (2022), which addressed the aforementioned classical concerns
of the literature on the ELB. These theoretical studies showcased how expectations-driven
liquidity traps could be avoided with appropriate FP, emphasising fiscal rule variations.
Meanwhile, examples of a more policy-focused contribution are Correia et al. (2013) and
Seidl and Seyrich (2023) which show that distortionary tax policy can perfectly replicate

2. See, for example, Eggertsson and Woodford (2003), Guerrieri and Iacoviello (2015), Kulish, Morley,
and Robinson (2017), Aruoba, Cuba-Borda, and Schorfheide (2018), Aruoba et al. (2021), and Angeletos
and Lian (2023).

3. See Definition 3 and Propositions 5 and 6 of Benhabib, Schmitt-Grohé, and Uribe (2001).
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the unique rational expectations equilibrium without the ELB constraint. While these
results were quantitatively demonstrated in a perfect foresight environment with agents
making expectation errors, our work – using a textbook New Keynesian setup – encom-
passes the mechanisms of their basic model as a special case. We build on these contri-
butions by focusing on how FP can rule out the non-trivial problems of non-existence or
multiplicity of MSV solutions.

It is notable that the aforementioned literature on the ELB and FP primarily focused
on model completeness or the elimination of a liquidity trap steady state, often assuming
restrictions on the shock process or stochastic environment. Our primary contribution is to
simultaneously consider coherence, completeness, and local determinacy (BK conditions)
concerning the ELB and FP instruments. Additionally, despite the paper delving into fiscal
andmonetary policy interactions,4 it refrains fromexamining fiscal policy potency or fiscal
multipliers at the ELB.

The paper proceeds as follows: Section 2 provides an overview of coherency and com-
pleteness (CC) conditions within the context of an ELB-bound NK model and describes
the methodology used to verify CC conditions. Section 3 demonstrates how Ricardian
FP restores coherency and completeness in a purely forward-looking reference NKmodel
constrained by the ELB. Section 4 assesses CC conditions for an NKmodel with FP featur-
ing policy inertia. Finally, Section 5 concludes the paper.

2 Verifying anMSVSolution of theNewKeynesianModel
with the ELB

In this section, we provide a sketch of the AM’s methodology to verify coherency and
completeness of systems of linear equations, applying the methodology to the textbook
NK model subject to the ELB. Further explanation and derivation can be found in AM or
Appendix A.

General verification for linear models. Let 𝒀𝑡 be a 𝑛 × 1 vector of endogenous variables,
𝑿𝑡 be a 𝑛𝑥 × 1 vector of exogenous state variables, and 𝑠𝑡 ∈ {0, 1} be an indicator variable
that is equal to 1 when some inequality constraint is slack and 0 otherwise. Addition-

4. This literature is vast – see, for example, Galı́, López-Salido, and Vallés (2007), Davig and Leeper
(2011), Eggertsson and Krugman (2012), Billi and Walsh (2022), and Hills and Nakata (2018).
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ally, let 𝛀𝑡 denote the information set, thus allowing us to write: 𝒀𝑡+1|𝑡 = E𝑡[𝒀𝑡+1 |𝛀𝑡] and
𝑿𝑡+1|𝑡 = E𝑡[𝑿𝑡+1 |𝛀𝑡].

Coherency requires that there exist some function 𝑓 (·) such that anMSV solution can be
represented as𝒀𝑡 = 𝑓 (𝑿𝑡). Assume that the exogenous states 𝑿𝑡 are 𝑘-state stationary first-
order Markov processes with transition kernel 𝑲. Stack the possible states of 𝑿𝑡 for states
𝑖 = 1, .., 𝑘 into a 𝑛𝑥 × 𝑘 matrix X. Let 𝒆𝑖 denote the 𝑖-th column of the 𝑘 × 𝑘 identity matrix
𝑰𝑘 , such that X𝒆𝑖 , the 𝑖-th column of X, is the 𝑖-th state of 𝑿𝑡 . The elements of the transition
kernel 𝑲 are 𝑲𝑖 𝑗 = Pr(𝑿𝑡+1 = X𝒆 𝑗 |𝑿𝑡 = X𝒆𝑖) and hence, E𝑡[𝑿𝑡+1 |𝑿𝑡 = X𝒆𝑖] = X𝑲⊤𝒆𝑖 . Then
define Y as an 𝑛 × 𝑘 matrix whose 𝑖-th column, Y𝒆𝑖 , corresponds to 𝑿𝑡 = X𝒆𝑖5 along an
MSV solution.6 Thus, along an MSV solution we have:

E[𝒀𝑡+1 |𝒀𝑡 = Y𝒆𝑖] = E[𝒀𝑡+1 |𝑿𝑡 = X𝒆𝑖] = Y𝑲⊤𝒆𝑖 . (1)

This allows us to write state-space models, and thus DSGE models, in the form:

0 =
(
𝑨𝑠𝑖Y + 𝑩𝑠𝑖Y𝑲

⊤ + 𝑪𝑠𝑖X + 𝑫𝑠𝑖X𝑲
⊤)

𝒆𝑖 ,

𝑠𝑖 = 1
( [
𝒂⊤Y + 𝒃⊤Y𝑲⊤ + 𝒄⊤X + 𝒅⊤X𝑲⊤]

𝒆𝑖 > 0
)
, 𝑖 = 1, ..., 𝑘,

(2)

where𝑨𝑠𝑡 , 𝑩𝑠𝑡 , 𝑪𝑠𝑡 , and𝑫𝑠𝑡 are coefficientmatriceswith dimensions 𝑛×𝑛, 𝑛×𝑛, 𝑛×𝑛𝑥 , and
𝑛 × 𝑛𝑥 , respectively; 𝒂, 𝒃, 𝒄, and 𝒅 are coefficient vectors, and 1(·) is an indicator function
that is equal to 1 if its argument holds true and 0 otherwise.

The system (2) relates Y to X, and can be expressed as 𝐹(Y) = 𝜆(X), where 𝜆(·) is some
function of X, and 𝐹(·) is a piecewise linear continuous function of Y. The piecewise linear
function 𝐹(Y) can then be expressed as:

𝐹(Y) =
∑

𝐽⊆{1,...,𝑘}
A𝐽𝑺C𝐽vec(Y), (3)

where C𝐽 = {Y : Y ∈ R𝑛×𝑘 , 𝑠𝑖 = 1(𝑖 ∈ 𝐽)} is given by a configuration of regimes over the

5. In other words,
Y𝒆𝑖 = 𝑓 (X𝒆𝑖).

6. For Sections 2 and 3, we abstract from models that feature endogenous state variables. We revisit CC
conditions for models with endogenous states in Section 4, where we study the baseline NK model with
persistent FP rules.
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𝑘 states given by 𝐽, 𝑺C𝐽 is a 𝑛𝑘 × 𝑛𝑘 matrix of indicator elements,7 and vec(·) is the vector
operator function.8 In words: A𝐽 and C𝐽 are such that if 𝐹(Y) in (3) is invertible, then
the linear system is coherent and complete. Put another way, there exists a unique MSV
solution, as stipulated in GLM, if all the determinants of A𝐽 , 𝐽 ⊆ {1, ..., 𝑘} share the same
sign. Failure of this requirement implies that the model is generally incoherent and/or
incomplete:

Theorem 1 (GLM). Suppose that the mapping 𝐹(·) defined in (3) is continuous. A necessary
and sufficient condition for 𝐹(·) to be invertible is that all the determinants detA𝐽 , 𝐽 ⊆ {1, ..., 𝑘}
have the same sign.

An application of GLM Theorem 1 to the simple Fisherian model in Aruoba, Cuba-
Borda, and Schorfheide (2018) can be found in Appendix A.1. Below we provide an ap-
plication to a textbook NK model.

A reference NewKeynesian model with the ELB. Consider the canonical NKmodel as
set out in, for example, Galı́ (2015). The model in its log-linearised formwith the ELB can
be written in three equations, the dynamic IS equation (DISE), New Keynesian Phillips
Curve (NKPC), and the TR:9

DISE: 𝑦̂𝑡 = E𝑡 𝑦̂𝑡+1 −
1
𝜎
(𝑖𝑡 − E𝑡𝜋̂𝑡+1) + 𝜀𝑡 , (4a)

NKPC: 𝜋̂𝑡 = 𝛽E𝑡𝜋̂𝑡+1 + 𝜅 𝑦̂𝑡 , (4b)

TR: 𝑖𝑡 = max
{
−𝜇, 𝜙𝜋𝜋̂𝑡 + 𝜙𝑦 𝑦̂𝑡

}
, (4c)

7. Note that when Y𝑛×𝑘 is vectorised, and if 𝑘 = 2, the first 𝑛 elements correspond to state 1 and the last
𝑛 elements correspond to state 2. Thus, in essence, the elements of 𝑺C𝐽

map the entries of A𝐽 for the 𝑘 states
to the vectorised set of endogenous variables in Y.

8. The transformation of (2) into (3) is generally non-trivial (in which the expressions of A𝐽 require
Kronecker product operations) as it presents a Sylvester equation in Y. See, for example, Kolmogorov and
Fomin (1957). However, there are two exceptions that allow straightforward computation of the A𝐽 : 𝑛 =

1 and 𝑛 = 𝑘 > 1. We make use of this simplifying assumption both in this example and the analytical
derivation in Appendix A.

9. To keep the analysis simple, we omit cost-push shocks in the NKPC andmonetary policy shocks in the
TR.
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and where 𝜀𝑡 is a demand shock. Furthermore, 𝑦̂𝑡 is the output gap, 𝜋̂𝑡 is inflation, and 𝑖𝑡

is the nominal interest rate.10 The parameters of interest in themodel are: 𝜎, the coefficient
of relative risk aversion; 𝛽, the representative household’s subjective discount factor; 𝜅, the
slope of the NKPC; 𝜇 = ln(𝑟𝜋∗), the ELB of the nominal interest rate in deviation from the
steady state, where 𝑟 = 1/𝛽 is the steady state gross real interest rate and 𝜋∗ is the gross in-
flation target of the monetary authority; 𝜙𝑦 , the monetary authority’s response parameter
to output fluctuations; and 𝜙𝜋, the monetary authority’s responsiveness to inflation.

For analytical tractability, let 𝑘 = 2 with 𝑝 and 𝑞 be probabilities of remaining in a posi-
tive interest rate (PIR) and zero interest rate (ZIR) state, respectively. When the constraint
on 𝑖𝑡 is binding, the system can be rewritten as follows

(
1 −𝜅
0 1

) (
𝜋̂𝑡

𝑦̂𝑡

)
+

(
−𝛽 0
− 1

𝜎 −1

) (
𝜋̂𝑡+1
𝑦̂𝑡+1

)
+

(
1 0 0
0 1 1

𝜎

) ©­­«
𝑢𝑡

𝜀𝑡
𝜇

ª®®¬ = 0. (5)

Whilst when the constraint is slack the system is given by(
1 −𝜅
𝜙𝜋

𝜎 1 + 𝜙𝑦

𝜎

) (
𝜋̂𝑡

𝑦̂𝑡

)
+

(
−𝛽 0
− 1

𝜎 −1

) (
𝜋̂𝑡+1
𝑦̂𝑡+1

)
+

(
1 0
0 1

) (
𝑢𝑡

𝜀𝑡

)
= 0 (6)

The model can then be cast in the canonical form as in (2). To check whether the model
satisfies the CC conditions, it is sufficient to check the invertability of 𝐹(·), as in (3), by
ensuring that the signs of detA𝐽1 and detA𝐽4 are identical. Assuming 𝑝 = 𝑞 = 1 yields

detA𝐽1 = det

(
1 − 𝛽 −𝜅
𝜙𝜋−1
𝜎

𝜙𝑦

𝜎

)
=

(1 − 𝛽)𝜙𝑦 + 𝜅(𝜙𝜋 − 1)
𝜎

> 0, (7)

detA𝐽4 = det

(
1 − 𝛽 −𝜅
− 1

𝜎 0

)
= −𝜅

𝜎
< 0. (8)

We observe that the signs of |A𝐽1 | and |A𝐽4 | differ, which implies that the model is not
generally coherent under an active TR with 𝜙𝜋 > 1 and 𝜙𝑦 ≥ 0.

10. Hatted variables denote a variable in terms of log deviations from steady state. In other words, for any
generic variable, say, 𝑋, we have:

𝑥̂𝑡 = ln𝑋𝑡 − ln 𝑋̄ ≈ 𝑋𝑡 − 𝑋̄

𝑋̄
,

where 𝑋̄ is the value of 𝑋𝑡 in the non-stochastic steady state.
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Figure 1: Absorbing State of the New Keynesian Model (𝜀𝑡 = 0)

Note: Diagram on the left depicts equilibria when the Taylor principle is adhered to. Diagram on the right
shows the PIR absorbing state for an interest rate rule that does not satisfy the Taylor principle.

We can graphically represent the CC conditions for the canonical NK model by first
considering the absorbing state of the model for when 𝜀𝑡 = 0. In the absorbing state we
have 𝜋̂𝑡 = 𝜋̂𝑡+1 = 𝜋̂ and 𝑦̂𝑡 = 𝑦̂𝑡+1 = 𝑦̂. Hence, the NKPC can be written as the following
aggregate supply (𝐴𝑆) relation:

𝜋̂ =
𝜅

1 − 𝛽
𝑦̂ 𝐴𝑆. (9)

Meanwhile, the DISE can bewritten and rearranged to give a piecewise aggregate demand
(𝐴𝐷) relation:

𝜋̂ =


𝜅𝜙𝜋

1−𝛽 𝑦̂ 𝐴𝐷𝑇𝑅 ,

−𝜇 𝐴𝐷𝐸𝐿𝐵.
(10)

Clearly, themodel admits two absorbing states: a PIR equilibrium, {𝜋̂, 𝑦̂ , 𝑖} = {0, 0, 0}, and
a ZIR equilibrium, {𝜋̂, 𝑦̂ , 𝑖} = {−𝜇,−𝜇(1−𝛽)

𝜅 ,−𝜇}, which we can graphically see by plotting
(9) and (10) as in Figure 1.

The left plot of Figure 1 shows the incompleteness problem when the NK model fea-
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tures an active TR; well studied in the literature. Absent of any shocks, the model implies
two equilibria as the slope of𝐴𝐷𝑇𝑅 is steeper than that of𝐴𝑆. By contrast, when 𝜙𝜋 < 1, as
in the right plot of Figure 1, a unique equilibrium exists as the 𝐴𝐷 and 𝐴𝑆 curves intersect
once. However, as is well known, a passive TR leads to issues with local model dynamics
(Blanchard and Kahn, 1980).

Now consider the transitory state for when 𝜀𝑡 =
𝑝

𝜎 𝑟
𝑇 . For simplicity, we assume that

the shock is transitory and occurs once, in other words 𝑞 = 1. As the model is completely
forward looking, the economy remains in the transitory state for some indefinite period
of time after which it jumps to an absorbing state – either a PIR or ZIR equilibrium.

PIR absorbing state. At time 𝑡 the economy is in a transitory state. With probability
𝑝 the economy remains in the transitory state (𝑦̂𝑇 , 𝜋̂𝑇); with complimentary probability
1 − 𝑝 the economy moves to the PIR absorbing state. Thus, the 𝐴𝑆 and 𝐴𝐷 relations can
be written as

𝜋̂𝑇 =
𝜅

1 − 𝑝𝛽
𝑦̂𝑇 𝐴𝑆, (11a)

𝜋𝑇 =


𝜎(1−𝑝)
𝑝−𝜙𝜋

𝑦̂𝑇 − 𝑝

𝑝−𝜙𝜋
𝑟𝑇 𝐴𝐷𝑇𝑅 for 𝜋̂𝑇 ≥ − 𝜇

𝜙𝜋
,

𝜎(1−𝑝)
𝑝 𝑦̂𝑇 − 𝜇

𝑝 − 𝑟𝑇 𝐴𝐷𝐸𝐿𝐵 for 𝜋̂𝑇 ≤ − 𝜇
𝜙𝜋

.
(11b)

ZIR absorbing state. Here we repeat the above exercise but for when the absorbing state
is a ZIR equilibrium. As before, at time 𝑡 the economy is in a transitory state, and with
probability 𝑝 it remains in the transitory state, and with probability 1 − 𝑝 it transitions to
the ZIR absorbing state. As previously mentioned, the absorbing state here now differs in
value from the PIR case, and as such, the 𝐴𝑆 and 𝐴𝐷 relations can be written as:

𝜋̂𝑇 =
𝜅

1 − 𝑝𝛽
𝑦̂𝑇 −

𝛽(1 − 𝑝)
1 − 𝑝𝛽

𝜇 𝐴𝑆, (12a)

𝜋̂𝑇 =


𝜎(1−𝑝)
𝑝−𝜙𝜋

𝑦̂𝑇 + 1−𝑝
𝑝−𝜙𝜋

[
(1−𝛽)
𝜅 + 1

]
𝜇 − 𝑝

𝑝−𝜙𝜋
𝑟𝑇 𝐴𝐷𝑇𝑅 for 𝜋̂𝑇 ≥ − 𝜇

𝜙𝜋
,

𝜎(1−𝑝)
𝑝 𝑦̂𝑇 + 1−𝑝

𝑝

[
(1−𝛽)𝜎

𝜅 + 1
]
𝜇 − 𝜇

𝑝 − 𝑟𝑇 𝐴𝐷𝐸𝐿𝐵 for 𝜋̂𝑇 ≤ − 𝜇
𝜙𝜋

,
(12b)
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Figure 2: Transitory States of the New Keynesian Model (𝜙𝜋 > 1)

(a) PIR (top) and ZIR (bottom) absorbing states
(𝜃 > 1)

(b) PIR (top) andZIR (bottom) absorbing states
(𝜃 < 1)

respectively. To complete the description of this simple example, we define 𝜃 as the ratio
of the slopes of the 𝐴𝐷𝐸𝐿𝐵 and 𝐴𝑆 relations:

𝜃 =
𝜎(1 − 𝑝)(1 − 𝑝𝛽)

𝑝𝜅
. (13)

Figure 2 then plots the 𝐴𝑆 and 𝐴𝐷 when monetary policy adheres to the Taylor prin-
ciple (𝜙𝜋 > 1) for either a PIR or ZIR absorbing state when the economy is subject to the
shock term 𝜀𝑡 . The plots on the left hand side of Figure 2 are for the case of 𝜃 < 1, i.e.,
when 𝐴𝐷 is flatter relative to 𝐴𝑆. The plots on the right in Figure 2 are for the case where
𝜃 > 1, i.e., when 𝐴𝐷 is more steep than 𝐴𝑆. The different values for 𝜃 correspond to
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different values of 𝑝. Namely, the plots shown in Subfigure 2b with 𝜃 < 1 are for higher
values of 𝑝 than those generated for the case where 𝜃 > 1. Additionally, the higher value
of 𝑝 corresponds to a higher probability that the model remains in a transitory state each
period.

As discussed by AM and in line with Holden (2023),11 and shown in Figure 2, for the
case where 𝜃 > 1, the only support restriction necessary for an MSV solution to exist in
the absorbing state is (𝑟𝜋∗)−1 ≤ 1. But for when 𝜃 ≤ 1, the necessary support restriction
becomes:

1
𝑟𝜋∗ ≤ 1 and − 𝑟𝐿 ≤ 𝜇

(
𝜙𝜋 − 𝑝

𝜙𝜋𝑝
+ 𝜃

𝜙𝜋

)
. (14)

To put it simply, these support restrictions ensure that a negative shock to 𝐴𝐷 does not
lead it shifting too far to the left or above of 𝐴𝑆, as shown in 𝐴𝐷𝑇𝑅,𝐸𝐿𝐵

1 of Subfigure 2b.
Derivations and further explanation can be found in Appendix A, or interested readers

can refer to AM for more detail. We emphasise that non-uniqueness of equilibria in the
baseline NK model is driven by exogenous uncertainty captured by 𝑝. We proceed with
analysing how simple Ricardian FP can counteract the effects of uncertainty and restore
coherency and completeness.

3 Fiscal Policy and Coherency and Completeness

In this section, we show how Ricardian fiscal policy that consists of government spending
can render a baseline NK model subject to the ELB coherent and complete.

Model. We augment the baseline NKmodel with a simple FP setup followingWoodford
(2011). The model is otherwise standard, and derivation is given in Appendix B. In what
follows, we show that under simple fiscal feedback rules, the model can generate a unique
MSV solution in the presence of the ELB under certain restrictions on FP. The model is
described by the DISE, NKPC, TR, government budget constraint, and the natural rate

11. As Holden (2023) states, existence under rational expectations requires shocks to have sufficient mass
at zero.
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given by:

𝑥̂𝑡 = E𝑡 𝑥̂𝑡+1 −
𝑐

𝜎
(𝑖𝑡 − E𝑡𝜋̂𝑡+1 − 𝑟𝑛𝑡 ) + 𝜀𝑡 , (15a)

𝜋̂𝑡 = 𝛽E𝑡𝜋̂𝑡+1 + 𝜅𝑦 𝑥̂𝑡 +
𝜖
Φ

(
Ψ𝑤 𝜏̂𝑤𝑡 −Ψ𝑐 𝜏̂𝑐𝑡 −

1
𝜖
𝜏̂𝑠𝑡 −

𝜎
𝑐
𝑔̂𝑡

)
, (15b)

𝑖𝑡 = max
{
−𝜇, 𝜙𝜋𝜋̂𝑡 + 𝜙𝑦 𝑥̂𝑡

}
, (15c)

𝜗𝑔 𝑔̂𝑡 = 𝜏𝜏̂𝑡 + 𝜏𝑐(1 − 𝑔)𝜏̂𝑐𝑡 + 𝜏𝑠 𝜏̂𝑠𝑡 + 𝜏𝑤 𝜏̂𝑤𝑡 + 𝜗𝑥 𝑥̂𝑡 (15d)

𝑟𝑛𝑡 =
𝜎𝜓𝑦𝑎

𝑐
E𝑡Δ𝑎̂𝑡+1 − E𝑡Δ𝜏̂

𝑐
𝑡+1 −

𝜎𝑔

𝑐
E𝑡Δ𝑔̂𝑡+1, (15e)

where 𝑐 ≡ 𝐶/𝑌 is the steady-state consumption-output ratio, 𝑔 ≡ 𝐺/𝑌 is the steady-state
government expenditure-output ratio, 𝜗𝑔 ≡ 𝑔

(
1 + 𝜏𝑐 + 𝜏𝑤𝜎

1−𝑔

)
, 𝜗𝑥 ≡

(
1 + 𝜏𝑐 + 𝜏𝑠 + 𝜏𝑤𝜎

1−𝑔 + 𝜑
)
,

and 𝜅𝑦 and 𝜅𝑔 ≡ 𝜖𝜎
𝑐Φ denote slopes of the NKPC and coefficient on government expendi-

ture, 𝑔̂𝑡 , respectively. Additionally, consumption taxes are 𝜏̂𝑐𝑡 , labour income taxes are 𝜏̂𝑤𝑡 ,
production taxes are 𝜏̂𝑠𝑡 , 𝜏 is lump-sum tax to output ratio, and 𝜀𝑡 are household preference
shocks.

The model is closed with a rule for government expenditure of the form

E𝑡 𝑔̂𝑡+1 = 𝜌𝑔 𝑔̂𝑡 + 𝜓𝜋𝜋̂𝑡 + 𝜓𝑦 𝑥̂𝑡 , (16)

where 𝜓𝜋 and 𝜓𝑦 denote the degree of reaction of taxes to deviations of inflation and
the output gap, respectively. Throughout this section, we assume that the rule is “fully
inertial”, that is 𝜌𝑔 = 1.12

Calibration. In what follows, for all quantitative results the model is calibrated accord-
ing to the values in Table 1 unless specified otherwise. These parameter values are stan-
dard in the NK DSGE literature.
12. This assumption allows us to check if the model is coherent and complete analytically. We relax this

assumption in Section 4.

11



Table 1: Model Calibration

Parameter Value Description
𝜎 2 Coefficient of relative risk-aversion
𝜑 2/3 Frisch elasticity of labour supply
𝛽 0.99 Discount factor
𝜏𝑐 1/4 Steady-state level of fiscal instrument
𝜅𝑦 0.23 Slope of NKPC
Ψ𝑐 1/3 Coefficient on fiscal instrument
𝛾 3/4 Calvo probability
𝜖 10 Elasticity of substitution between goods
𝑐 3/4 Fraction of consumption in output
𝑔 1/4 Fraction of government spending in output
𝜙𝜋 1.5 Weight on inflation, Taylor rule
𝜙𝑦 0.2 Weight on output gap, Taylor rule

3.1 Permanent Fiscal Policy Change

Suppose production taxes are set as 𝜏̂𝑠𝑡 ≡ 𝜖
(
Ψ𝑤 𝜏̂𝑤𝑡 − 𝜎

𝑐 𝑔̂𝑡
)
, and consumption taxes are zero,

𝜏̂𝑐𝑡 = 0, then the effects of fiscal policy are offset in the NKPC:13

𝜋̂𝑡 = 𝛽E𝑡𝜋̂𝑡+1 + 𝜅𝑦 𝑥̂𝑡 . (17)

Thus, government spending only directly affects aggregate demand. We then have the
following proposition:

Proposition 1. A baseline New Keynesian model with fiscal policy that consists of government
spending, output taxes, labour income taxes, and lump-sum taxes as defined in (15), is generally
coherent and complete when the reaction of fiscal policy to inflation and the output gap, 𝜓𝜋 and𝜓𝑦 ,
respectively, as described in the fiscal rule Equation (16), is sufficiently strong.
Proof: Appendix B.2.

To intuit this proposition note that Ricardian equivalence holds in this environment,
and the absence of fiscal instruments in the NKPC (17). As such, the determinacy and

13. Absence of direct supply-side effects allows for analytical derivation of CC conditions. Government
expenditure in the NKPC could be offset using a different combination of taxes, for instance 𝜏𝑐 = 𝜏𝑤 = 0 and
−𝜏̂𝑠𝑡 /𝜖 = (𝜎/𝑐)𝑔̂𝑡 . Equivalently, this would also be the case under preferences as in Greenwood, Hercowitz,
and Huffman (1988) or inelastic labour supply.
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Figure 3: Coherency and Completeness Region for Inflation and Output Gap Fiscal Rule
(Equation (16))
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Blue circles denote regionswhere coherency and completeness conditions are satisfied. Red triangles denote
region where the model is either incoherent or incomplete.

equilibrium selection properties of FP are identical – and in fact work hand-in-hand – to
those of MP in a canonical New Keynesian model: increases (decreases) in inflation and
the output gap must be matched by a proportionate increase (decrease) in future lump-
sum taxes.

The region for which the model satisfies the CC conditions as a function of the fiscal
authority’s reaction parameters, 𝜓𝜋 and 𝜓𝑦 , are shown in Figure 3. Using our baseline
calibration, we see that the model generally satisfies the CC conditions in the negative or-
thant of 𝜓𝜋 and 𝜓𝑦 space, R2

−, and when 𝜓𝜋 is sufficiently large. Mechanically, a strong
enough reaction on the part of the fiscal authority to inflation and output deviations leads
to a unique MSV solution by ensuring an intersection between 𝐴𝐷 and 𝐴𝑆.14 Further-
more, we note that the degree of reaction on the part of the fiscal authority to the output
gap is largely irrelevant as to whether or not the model satisfies the CC conditions. More-
over, the rule in Equation (16) nests the special case where FP can fully replicate mone-
tary policy as in the simple case considered in Correia et al. (2013) and Seidl and Seyrich
(2023), who termed this as “unconventional fiscal policy”. This is the case if FP activates

14. This is illustrated for a simple case in Figure 5.
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Figure 4: Coherency and Completeness Region for Simple Inflation Targeting Fiscal Rule
(Equation (18))
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Blue circles denote regions where coherency and completeness conditions are satisfied. Red triangles de-
notes region where the model is either incoherent or incomplete.

at the ELB, and its feedback coefficients are set such that they exactly mirror the effects
of the counterfactual unconstrained monetary policy. Further details and derivations of
this special case are provided in Appendix B.3. Analogous results hold when monetary
policy is conducted optimally under discretion, which we provide analytical derivation
for in Appendix B.4.

In order to clarify our intuition and understand the mechanism driving requirements
of the CC conditions, we focus on a simplified version of (16) where the fiscal authority
strictly targets inflation (𝜓𝑦 = 0) with the following rule:

E𝑡Δ𝑔̂𝑡+1 = 𝜓𝜋𝜋̂𝑡 , (18)

and so the requirement for local determinacy – BK conditions – is:

𝜙𝜋 + 𝜓∗ > 1, (19)

where
𝜓∗ =

𝜎𝜓𝜋𝑔

𝑐
.
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When the inequality (19) does not hold, then the response of the real interest rate with
both monetary and fiscal policy is insufficient for a local determinate equilibrium. In this
sense, one can think of both MP and FP together as being passive, akin to a violation of
the Taylor principle in the canonical New Keynesian model. Conversely, when the above
inequality holds andMP is constrained at the ELB, then FP rules out belief-driven liquidity
traps, essentially acting as a substitute for MP in the constrained regime.

We then plot the region for which the model with the simplified rule (18) satisfies the
CC conditions for parameters of 𝜙𝜋 and𝜓𝜋 in Figure 4. Following the intuition underlying
condition (19), if we are interested in parameter values of 𝜙𝜋 and 𝜓𝜋 that satisfy both BK
and CC conditions then we can restrict our attention to the right-half of Figures 3 and 4.
In order to satisfy both BK and CC conditions, and conditional on 𝜙𝜋 > 1, then 𝜓𝜋 must
be set to at least approximately 7.5 given our calibration values.

In fact, one key insight of this paper is to explore the niche case where the model satis-
fies the CC conditions but fails to satisfy the BK conditions. This can be illustrated graphi-
cally with some further simplification about the nature of shocks. Consider the simple FP
rule, Equation (18), and the absorbing state case with 𝜀𝑡 = 0. The 𝐴𝑆 curve takes a similar
form as in Equation (9), and the 𝐴𝐷 curve is piecewise linear, giving us the following
system:

𝜋̂ =
𝜅𝑦

1 − 𝛽
𝑥̂ 𝐴𝑆, (20a)

𝜋̂ =


(𝜙𝜋 + 𝜓∗) 𝜅𝑦

1−𝛽 𝑥̂ 𝐴𝐷𝑇𝑅 for 𝜋̂ ≥ −𝜇,
𝜓∗ 𝜅𝑦

1−𝛽 𝑥̂ − 𝜇 𝐴𝐷𝐸𝐿𝐵 for 𝜋̂ ≤ −𝜇.
(20b)

The PIR equilibrium is trivial and is given, as before, by {𝜋̂, 𝑥̂ , 𝑖} = {0, 0, 0}. The ZIR
equilibrium here is {𝜋̂, 𝑥̂ , 𝑖} =

{
𝜇

𝜓∗−1 ,
(1−𝛽)𝜇

𝜅𝑦(𝜓∗−1) ,−𝜇
}
.

PIR absorbing state with active FP (𝜓∗ > 1 and 𝜓∗ < −𝜙𝜋). If 𝜓∗ > 1 or 𝜓∗ < −𝜙𝜋,
the economy cannot be at the ELB in the absorbing state. That is, for an inflation level
that is higher than the lower bound on the nominal interest rate, 𝜋̂ > −𝜇, the nominal
interest rate as per the TR is unconstrained, and so the following equality – obtained by
substituting (20a) into 𝐴𝐷𝐸𝐿𝐵 in (20b) – implies an inflation rate that is higher than −𝜇:

𝜋̂ =
𝜇

𝜓∗ − 1
.
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Thus, inflation cannot be at its ELB steady state level, and by implication the nominal
interest rate cannot be at the ELB. Hence, no ZIR equilibrium can exist with an active FP15

rule as in Equation (18).

Absorbing states with passive FP (𝜓∗ < 1 and 0 < 𝜓∗ + 𝜙𝜋 < 1). Here, the ZIR equi-
librium is consistent with the ELB constraint on the nominal interest rate since implied
inflation is less than or equal to −𝜇. Passive FP also implies that the slope of 𝐴𝐷𝑇𝑅 is
flatter than that of 𝐴𝑆, hence there are two absorbing – both the PIR and ZIR equilibria.
Moreover, a passive FP rule implies that in a ZIR equilibrium the inflation rate is lower
than that of the ZIR equilibrium with no fiscal rule. Figure 5 illustrates the two cases.

We proceed with analysing the transitory equilibria with 𝜀𝑡 =
𝑝

𝜎 𝑟
𝑇 in each of the cases.

As before, the economy remains in a transitory state for an indefinite amount of time,
before transitioning to an absorbing state thereafter.

Transitory states with active FP (𝜓∗ ∉ (−𝜙𝜋 , 1)). With probability 𝑝, the economy re-
mains in a transitory state and jumps to the PIR absorbing state with complimentary prob-
ability 1 − 𝑝. 𝐴𝑆 and 𝐴𝐷 are given by

𝜋̂𝑇 =
𝜅𝑦

1 − 𝑝𝛽
𝑥̂𝑇 𝐴𝑆 (21a)

𝜋̂𝑇 =


𝜎(1−𝑝)

𝑐(𝑝−𝜙𝜋−𝜓∗) 𝑥̂
𝑇 − 𝑝

𝑐(𝑝−𝜙𝜋−𝜓∗) 𝑟
𝑇 𝐴𝐷𝑇𝑅 for 𝜋̂𝑇 ≥ − 𝜇

𝜙𝜋
,

𝜎(1−𝑝)
𝑐(𝑝−𝜓∗) 𝑥̂

𝑇 − 𝜇
𝑝−𝜓∗ − 𝑝

𝑐(𝑝−𝜓∗) 𝑟
𝑇 𝐴𝐷𝐸𝐿𝐵 for 𝜋̂𝑇 ≤ − 𝜇

𝜙𝜋
.

(21b)

When 𝜓∗ > 1, 𝐴𝐷𝑇𝑅 and 𝐴𝐷𝐸𝐿𝐵 have negative slope. The model thus satisfies the CC
conditions. When 𝜓∗ < −𝜙𝜋, the slopes of 𝐴𝐷𝑇𝑅 and 𝐴𝐷𝐸𝐿𝐵 are positive and 𝐴𝐷𝐸𝐿𝐵 is
flatter than 𝐴𝑆. This implies a unique transitory equilibrium.

Transitory states with passive FP (𝜓∗ ∈ (−𝜙𝜋 , 1)). In the case where 𝜓∗ ∈ (−𝜙𝜋 , 1),
there are two potential absorbing states. In the PIR equilibrium, we have the system as
above. The slope of 𝐴𝐷𝑇𝑅 is negative, while the slope of 𝐴𝐷𝐸𝐿𝐵 can either be positive or
negative. Hence, for some values of 𝑝, the slope of 𝐴𝐷𝐸𝐿𝐵 can be flatter than that of 𝐴𝑆,
which implies incoherency or incompleteness in absence of support restrictions. This is

15. Our use of “active” and “passive” to describe FP should not be confused with the more conventional
use of these terms established by Leeper (1991) to describe monetary and fiscal policy interactions.
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Figure 5: Coherency and Completeness with Active and Passive Simple Fiscal Rules (Ab-
sorbing State; 𝜀𝑡 = 0)

Figure illustrates uniqueness of the absorbing state under active fiscal policy (top-left and bottom-right). If
the fiscal policy is insufficiently aggressive, there are multiple absorbing states (top-right and bottom-left).
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the case when
𝜃 =

𝜕𝐴𝐷𝐸𝐿𝐵/𝜕𝑥̂
𝜕𝐴𝑆/𝜕𝑥̂ =

𝜎(1 − 𝑝)(1 − 𝑝𝛽)
𝜅𝑦𝑐(𝑝 − 𝜓∗) < 1. (22)

If the ZIR equilibrium is the absorbing state, the system takes the form

𝜋̂𝑇 =
𝜅𝑦

1 − 𝑝𝛽
𝑥̂𝑇 + 𝛽(1 − 𝑝)

1 − 𝑝𝛽

𝜇

𝜓∗ − 1
𝐴𝑆, (23a)

𝜋̂𝑇 =


(1−𝑝)𝜎

𝑐(𝑝−𝜙𝜋−𝜓∗) 𝑥̂
𝑇 − (1−𝑝)𝜇

(𝜓∗−1)(𝑝−𝜓∗−𝜙𝜋)

[
(1−𝛽)𝜎
𝑐𝜅𝑦

+ 1
]
− 𝑝

𝑐(𝑝−𝜙𝜋−𝜓∗) 𝑟
𝑇 𝐴𝐷𝑇𝑅 ,

(1−𝑝)𝜎
𝑐(𝑝−𝜓∗) 𝑥̂

𝑇 − (1−𝑝)𝜇
(𝜓∗−1)(𝑝−𝜓∗)

[
(1−𝛽)𝜎
𝑐𝜅𝑦

+ 1
]
− 𝜇

(𝑝−𝜓∗) −
𝑝

𝑐(𝑝−𝜓∗) 𝑟
𝑇 𝐴𝐷𝐸𝐿𝐵.

(23b)

Since FP is passive, the slope of 𝐴𝐷𝑇𝑅 is negative and the slope of 𝐴𝐷𝐸𝐿𝐵 can be positive.
In this case, the model can be incoherent or incomplete due to 𝐴𝐷𝐸𝐿𝐵 being flatter than
𝐴𝑆 (𝜃 < 1). The four cases related to active and passive FP with both absorbing states are
illustrated in Figure 6.

Relationship to baseline NK model and importance of commitment. For the baseline
NKmodel considered in Section 2, Equation (13) summarises the conditions under which
the model possesses a unique MSV solution. It is worth reiterating that unlike the case of
a model with FP, the baseline NK model implies that the slope of 𝐴𝐷𝐸𝐿𝐵 is determined
only by exogenous uncertainty 𝑝 and deep structural parameters.

Thus, one can argue that if the effects of uncertainty can be counteracted by FP, the
model will have a unique MSV solution thus satisfying the CC conditions. The condition
on 𝜃 implies that the probability of shock persistence, 𝑝, must be low so that CC conditions
are satisfied. An analogous condition for the model with permanent fiscal policy changes
can be drawn from Equation (22); if 𝜃 > 1, the model is coherent and complete. This con-
dition shows that unlike the baseline NK model, FP can alleviate the effects of exogenous
uncertainty on the slope of 𝐴𝐷𝐸𝐿𝐵, ensures that the CC conditions are satisfied.

The importance of persistence implied by (18) cannot be overstated and is a key point
of this paper. To highlight this, consider the case where the fiscal targeting rule is given in
deviations and not in growth rates; 𝑔̂𝑡 = 𝜓𝜋𝜋̂𝑡 . This will imply the following 𝐴𝐷𝐸𝐿𝐵/𝐴𝑆
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Figure 6: Transitory States under Active and Passive Fiscal Policy

Top row shows transitory state with a positive interest rate absorbing state with active fiscal policy. Top left
panel shows procyclical fiscal policy. Top right shows countercyclical fiscal policy. Bottom panels shows
passive procyclical fiscal policy regime. Passive fiscal policy in general implies non-existence of solution or
two solutions as a special case. Active fiscal policy implies existence of unique solution.

slope ratio that is required to be greater than unity to satisfy the CC conditions16:

𝜃 =
𝜎(1 − 𝑝)(1 − 𝑝𝛽)
𝑝 + 𝜓∗(1 − 𝑝) > 1,

16. We provide more discussion and show how contemporaneous fiscal policy rules can ensure equilib-
rium uniqueness in a special case where monetary policy targets the output gap in Appendix B.6.19



which does not hold if 𝑝 is sufficiently large for any bounded value of 𝜓∗.
The key intuition for permanent policy changes can be drawn from the fact that the FP

instrument is present in the 𝐴𝐷 relationship in Equation (15a) in expectation. Thus, any
rule that targets contemporaneous deviations would imply additional terms in expecta-
tion that add uncertainty to the system. This highlights the importance of commitment
to future changes in policy that depend on contemporaneous deviations of endogenous
variables as in, for example, (18). The assumption that a fiscal authority needs to apply
a targeting rule to growth rates of the instrument and not to its deviations is rather re-
strictive, however. We relax this assumption in Section 4 allowing for an inertial rule with
𝜌𝑔 < 1.

3.2 Equivalence of Simple Fiscal Policy Regimes

So far, we have considered a standardNKmodel augmentedwith a simple FP setupwhere
government spending targets inflation and output gap. The key difference between this
model, described by the system (15), and a standard NK model as in Equations (4a)-
(4c) is the presence of a fiscal instrument in the DISE. As shown above, if FP uses this
instrument to react to exogenous disturbances aggressively enough, the model satisfies
the CC conditions. Existence of such an instrument in the DISE is, however, not exclusive
to the fiscal setup we have discussed.

For example, consider the casewhere the fiscal authority levies consumption andwage
taxes, 𝜏𝑐 and 𝜏𝑤 , respectively, and only redistributes the taxes as lump-sum transfers, 𝜏𝑡 .
Additionally, assume that there are no production subsidies, 𝜏𝑠𝑡 = 0,∀𝑡. Then, if the fol-
lowing condition holds, the effects of FP are offset in the NKPC in Equation (15b):

Ψ𝑤 𝜏̂𝑤𝑡 = Ψ𝑐 𝜏̂𝑐𝑡 . (24)

The natural interest rate in the DISE can then be written as:

𝑟𝑛𝑡 = −E𝑡Δ𝜏̂
𝑐
𝑡+1 −

𝜎
𝑐
𝜀𝑡 (25)

where Δ𝜏̂𝑐
𝑡+1 is the consumption tax growth rate.

Thus, FP can replace activemonetary policywhen the latter is constrained thus render-
ing the model linear and guaranteeing that the CC conditions are satisfied. This is in line
with the results in Correia et al. (2013) and Seidl and Seyrich (2023). Under this formu-
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lation, the strength of the fiscal instrument (in the DISE) may be higher or lower than in
(15), depending on the values of the model’s structural parameters. For example, under
our calibration in Table 1, the coefficient on the fiscal instrument (government expendi-
ture) is 𝑔, while on the former it is Ψ𝑐/𝜎. While qualitatively the role of the instruments
in both cases is identical, the degree of reaction of Δ𝜏̂𝑐

𝑡+1 is required to be greater than that
of Δ𝑔̂𝑡+1 since the coefficient on the former is smaller.

Using this alternative setup, we show the CC regions in Figure 7 under: (i) simple
inflation targeting in Figure 7a and (ii) inflation and output targeting in Figure 7b. The
relevant coefficients of the canonical form are given in Appendix B.5. As before, if the de-
gree of reaction of differentials of consumption tax to inflation is large enough, the model
is coherent and complete. The intuition for this case is simple and mirrors that in Section
3.1.
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Figure 7: Coherency and Completeness Regions for Consumption Tax Fiscal Policy
Regimes

(a) Simple Inflation Targeting FP (𝜓𝑦 = 0)
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(b) Inflation and Output Gap Rule
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Blue circles denote regionswhere coherency and completeness conditions are satisfied. Red triangles denote
regionswhere themodel is incoherent or incomplete. Consumption tax rule is given byΔ𝜏̂𝑐

𝑡+1 = 𝜓𝜋𝜋̂𝑡+𝜓𝑦 𝑥̂𝑡 .
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4 ANewKeynesianModelwith InertialGovernment Spend-
ing

We have shown in Section 3.1 how a permanent change in fiscal policy can ensure co-
herency and completeness. In this section, we generalise over the fiscal rule in Equation
(16) and allow for inertia, in other words 𝜌𝑔 < 1, instead of a permanent policy change.

Consider the baseline NK-FP model described by (15). But assume that there are no
distortionary taxes (𝜏̂𝑠𝑡 = 𝜏̂𝑐𝑡 = 𝜏̂𝑤𝑡 = 0,∀𝑡). We close the model by augmenting the rule
(16) to account for inertia in 𝑔̂𝑡 . Specifically, we replace (16) with:

𝑔̂𝑡 = 𝜌𝑔 𝑔̂𝑡−1 + 𝜓𝜋𝜋̂𝑡 + 𝜓𝑦 𝑥̂𝑡 , (26)

where 𝜌𝑔 ∈ (0, 1) is a persistence parameter. Thus, the rest of the model is given by:

𝑥̂𝑡 = E𝑡 𝑥̂𝑡+1 −
𝑐

𝜎

(
𝑖𝑡 − E𝑡𝜋̂𝑡+1 − 𝑟𝑛𝑡

)
, (27a)

𝜋̂𝑡 = 𝛽E𝑡𝜋̂𝑡+1 + 𝜅𝑦 𝑥̂𝑡 − 𝜅𝑔 𝑔̂𝑡 , (27b)

𝑖𝑡 = max{−𝜇;𝜙𝜋𝜋̂𝑡 + 𝜙𝑦 𝑥̂𝑡}, (27c)

with
𝑟𝑛𝑡 = −𝜎

𝑐
(𝑔E𝑡Δ𝑔̂𝑡+1 + 𝜀𝑡).

The system in (27) can be evaluated about two absorbing states, either PIR or ZIR. About
the PIR steady state, it must be the case that {𝑥̂ , 𝜋̂, 𝑖 , 𝑔̂} = {0, 0, 0, 0}. The existence of the
PIR steady state is trivial to reconcile. When policy is effective, the inflation and output
gaps are closed and the system of equations gives the solution in the PIR absorbing state.
However, about the ZIR absorbing state we have that 𝑖 = −𝜇, thus giving a solution of the
form

{𝑥̂ , 𝜋̂, 𝑖 , 𝑔̂} =
{
−
(1 − 𝛽)(1 − 𝜌𝑔) + 𝜅𝑔𝜓𝜋

𝜅𝑦(1 − 𝜌𝑔) − 𝜅𝑔𝜓𝑦
𝜇,−𝜇,−𝜇,

𝜓𝑦 𝑥̂ + 𝜓𝜋𝜋̂

1 − 𝜌𝑔

}
. (28)

One can observe that under certain fiscal policy rules, the above ZIR equilibrium is not
consistentwith the constraint on the TR and, thus, the ZIR equilibrium is ruled out. Specif-
ically, we require that 𝑥̂ be sufficiently large such that the ELB constraint on 𝑖𝑡 is not bind-
ing:

−𝜇 < −𝜙𝜋𝜇 + 𝜙𝑦 𝑥̂ =⇒ −
𝜇(1 − 𝜙𝜋)

𝜙𝑦
< 𝑥̂ , 𝜙𝑦 ≠ 0.
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This implies
1 − 𝜙𝜋

𝜙𝑦
>

(1 − 𝛽)(1 − 𝜌𝑔) + 𝜅𝑔𝜓𝜋

𝜅𝑦(1 − 𝜌𝑔) − 𝜅𝑔𝜓𝑦
,

with the LHS being negative under conventional restrictions on TR coefficients. As 𝜌𝑔

tends to unity, we get

lim
𝜌𝑔→1

(1 − 𝛽)(1 − 𝜌𝑔) + 𝜅𝑔𝜓𝜋

𝜅𝑦(1 − 𝜌𝑔) − 𝜅𝑔𝜓𝑦
= −

𝜓𝜋

𝜓𝑦
<

1 − 𝜙𝜋

𝜙𝑦
,

which holds under countercyclical fiscal policy, 𝜓𝑦 < 0, 𝜓𝜋 < 0 with 𝜓𝜋 sufficiently large
in absolute value. Thus, under countercyclical fiscal policy, if 𝜌𝑔 is sufficiently large there
cannot exist a ZIR absorbing state. This analysis highlights that a ZIR equilibrium can
be ruled out if (i) the monetary authority targets the output gap and (ii) fiscal policy is
sufficiently persistent and countercyclical.

As themodel contains an endogenous state it cannot be represented as a finite-dimensional
piecewise linear function and the GLM result does not apply. While we were previously
able to obtain analytical expressions for which the model satisfied the CC conditions, this
is no longer feasible. Thus, we have the following result that we verify numerically using
an algorithm that is based on the work by AM:17 A New Keynesian model subject to an
occasionally binding ELB constraint on interest rates and with fiscal policy as described
in (27) satisfies the coherency and completeness conditions if fiscal policy is sufficiently
persistent and countercyclical.

4.1 Verifying Coherency and Completeness with an Endogenous State
Variable

In Section 3 we focused on a model that did not feature endogenous state variables. In
other words, in the model’s canonical form representation,

0 = 𝑨𝑠𝑡𝒀𝑡 + 𝑩𝑠𝑡𝒀𝑡+1|𝑡 + 𝑪𝑠𝑡𝑿𝑡 + 𝑫𝑠𝑡𝑿𝑡+1|𝑡 + 𝑯𝑠𝑡𝒀𝑡−1,

𝑠𝑡 = 1
(
𝒂⊤𝒀𝑡 + 𝒃⊤𝒀𝑡+1|𝑡 + 𝒄⊤𝑿𝑡 + 𝒅⊤𝑿𝑡+1|𝑡 + 𝒉⊤𝒀𝑡−1 > 0

)
,

17. AM developed an algorithm to verify the CC conditions for baseline New Keynesian model subject to
the ELB on interest rates, active TR, and whereby the TR exhibited persistence.
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we assumed that the coefficient matrix 𝑯𝑠𝑡 = 𝑶, and the coefficient matrix 𝒉 = 0. This
was to keep the computation and verification of the CC conditions analytically tractable
by omitting endogenous state variables. With these assumptions, an MSV solution could
be represented as 𝒀𝑡 = 𝑓 (𝑿𝑡) by the time-invariant matrix Y; and variables along an MSV
solution satisfy the condition (1).

However, this assumption is restrictive andmakes assessment of CC conditions in stan-
dard DSGEmodels limited, particularly in the literature exploring themonetary and fiscal
policy mix and ELB. In this section, we loosen this assumption and consider a canonical
NK-FP model with an endogenous state variable, namely government expenditure.

With endogenous states, along an MSV solution we have

E [𝒀𝑡+1 |𝒀𝑡 = Y𝑡𝒆𝑖 ,𝑿𝑡 = X𝒆𝑖] = Y𝑖
𝑡+1𝑲

⊤𝒆𝑖 , (29)

where Y𝑖
𝑡+1 gives the support of 𝒀𝑡+1 when 𝒀𝑡 is in the 𝑖-th state. However, this presents a

non-trivial computational challenge: the support of 𝒀𝑡 is exponentially rising for a given
initial condition𝒀0. Therefore, anMSV solution cannot be characterised by afinite-dimensional
system of piecewise linear equations. This requires a different method of analysis to that
of Section 3.

In the fashion of AM, we solve the model recursively from some terminal state 𝑡 = 𝑇.
For simplicity, assume that the endogenous state variable is a scalar, 𝑯𝑠𝑡𝒀𝑡−1 = 𝒉𝑠𝑡 𝑦𝑡−1,
where 𝒉𝑠𝑡 is 𝑛×1 and 𝑦𝑡 = 𝒈⊤𝒀𝑡 is a linear combination of 𝒀𝑡 andwhere 𝒈 =

(
0 0 0 1

)⊤
.

For a date 𝑇 whereby 𝑡 ≥ 𝑇, the MSV solution 𝑓 (𝑦𝑡−1,𝑿𝑡) can be written as

Y𝑡 = G𝑦𝑡−1 + Z,

whereG and Z are 𝑛× 𝑘 matrices. Z captures the portion of 𝒀𝑡 that depends on exogenous
variables 𝑿𝑡 . In the case of no exogenous variables, we have that G = 𝑶 and so Y𝑡 = Z,
yielding the standard case with a time invariant Y and when the analysis of Section 3
applies. The columns ofG return the coefficients of 𝑦𝑡−1 in theMSV solution, mapping it to
different states of 𝑿𝑡 . Assume, as before, that 𝑘 = 2, whereby the “bad state” corresponds
to 𝑖 = 1, and the “good state” is given by 𝑖 = 2. In other words, 𝑖 = 1 is the ZIR state and
𝑖 = 2 is a PIR state. Then the endogenous dynamics in the bad state can be different from
the good state.

With no endogenous dynamics, whereY = Z, we can put themodel in 𝑘-state canonical
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form as in (2). With endogenous dynamics, the equivalent expression is given by

0 =
(
𝑨𝑠𝑡 ,𝑖G𝒆𝑖 + 𝒉𝑠𝑡 ,𝑖 + 𝑩𝑠𝑡 ,𝑖G𝑲⊤𝒆𝑖𝒈⊤G𝒆𝑖

)
𝑦𝑡−1

+
(
𝑨𝑠𝑡 ,𝑖Z + 𝑩𝑠𝑡 ,𝑖G𝑲⊤𝒆𝑖𝒈⊤Z + 𝑩𝑠𝑡 ,𝑖Z𝑲

⊤ + 𝑪𝑠𝑡 ,𝑖X + 𝑫𝑠𝑡 ,𝑖X𝑲
⊤)

𝒆𝑖 ,
(30)

for all 𝑖 = 1, ..., 𝑘. For a given regime 𝐽 corresponding to the 𝑘 states and their tran-
sitions, {(𝑃𝐼𝑅, 𝑃𝐼𝑅), (𝑍𝐼𝑅, 𝑃𝐼𝑅), (𝑃𝐼𝑅, 𝑍𝐼𝑅), (𝑍𝐼𝑅, 𝑍𝐼𝑅)},18 a slackness condition for the
constraint 𝑠𝑡 ,𝑖 is determined which gives a system of 2𝑛𝑘 polynomial equations in the 2𝑛𝑘
unknowns G and Z by equating the coefficients on 𝑦𝑡−1 and the constant terms to zero,
respectively. As these conditions are polynomial and not piecewise linear inG and Z, the
algorithm and theoremofGourieroux, Laffont, andMonfort (1980) is no longer suitable to
check coherency. Instead, we build on the algorithm and “brute force” numerical solution
method of AM,19 which essentially goes through all possible 2𝑘 𝐽 regime configurations
to check if there are any feasible solutions that satisfy the inequality constraints.

Themodel can be solved backwards starting from some terminal date𝑇. We know that
at 𝑇, the solution to the model takes the following form

Y𝑇 = G𝐽0𝑦𝑇−1 + Z𝐽0 , (31)

where 𝐽0 ∈ J, and where J defines the configuration of regimes in 𝑇. As we explain in
Appendix A.4, in order for CC conditions of a DSGE model with an endogenous state
variable to be satisfied, the determinants,

|A𝐽0𝐽1 | =
𝑘∏
𝑖

det
(
𝑨𝑠𝑇−1,𝑖 + 𝑩𝑠𝑇−1,𝑖G𝐽0𝑲

⊤𝒆𝑖𝒈⊤
)
, ∀𝑡 ≤ 𝑇, (32)

must all have the same sign. If this indeed the case, then the model solution is given as:

Y𝑇−1𝒆𝑖 = −
(
𝑨𝑠𝑇−1,𝑖 + 𝑩𝑠𝑇−1,𝑖G𝐽0𝑲

⊤𝒆𝑖𝒈⊤
)−1[ (

𝑩𝑠𝑇−1,𝑖Z𝐽0𝑲
⊤ + 𝑪𝑠𝑇−1,𝑖X + 𝑫𝑠𝑇−1,𝑖X𝑲

⊤)
𝒆𝑖 + 𝒉𝑠𝑇−1,𝑖 𝑦𝑇−2

]
,

Iterating the solution backwards implies that all the determinants of A𝐽0 ,...,𝐽𝑇−𝑡 must have

18. See (60) in Appendix A.4.
19. See Appendix A.5.2 of their paper.

26



the same sign. The recursive solution will be given by

Y𝑡 = G𝐽0 ,...,𝐽𝑇−𝑡 𝑦𝑡−1 + Z𝐽0 ,...,𝐽𝑇−𝑡 ,

where G𝐽0 ,...,𝐽𝑇−𝑡 and Z𝐽0...,𝐽𝑇−𝑡 can be computed recursively using

Z𝐽0...,𝐽𝑇−𝑡 ,𝑖 = −
(
𝑨𝑠𝑡 ,𝑖 + 𝑩𝑠𝑡 ,𝑖G𝐽0 ,...,𝐽𝑇−𝑡−1𝑲

⊤𝒆𝑖𝒈⊤
)−1(

𝑩𝑠𝑡 ,𝑖Z𝐽0 ,...,𝐽𝑇−𝑡−1𝑲
⊤ + 𝑪𝑠𝑡 ,𝑖X + 𝑫𝑠𝑡 ,𝑖X𝑲

⊤)
𝒆𝑖 ,

(33)

G𝐽0 ,...,𝐽𝑇−𝑡 ,𝑖 = −
(
𝑨𝑠𝑡 ,𝑖 + 𝑩𝑠𝑡 ,𝑖G𝐽0 ,...,𝐽𝑇−𝑡−1𝑲

⊤𝒆𝑖𝒈⊤
)−1 𝒉𝑠𝑡 ,𝑖 . (34)

The recursive solution from terminal𝑇 solves themodel backwards to 𝑡 = 1 and implies up
to 2(𝑇−1)𝑘 solution paths. Given some initial condition, 𝑦0, and conditional on satisfaction
of CC conditions, the recursive solution is unique. If the CC conditions are not satisfied,
there can be either no or multiple solutions.

We thus apply the following algorithm to checkCC conditions assuming that the shocks
are two-state Markovian. First, calculate G𝐽0 and Z𝐽0 from (58) and (59) for four possi-
ble regime configurations in 𝐽0. For each of the four regime configurations in 𝐽1 compute
|A𝐽0𝐽1 |. If for some regime configuration 𝐽0, |A𝐽0𝐽1 | have the same sign, a unique solution is
possible; or else we conclude that no unique solution exists. Second, for all configurations
of 𝐽0, where |A𝐽0𝐽1 | have the same sign, computeG𝐽0𝐽1 and Z𝐽0𝐽1 using (33) and (34). Third,
continue solving backwards for each 𝐽𝑇−𝑡 until 𝑡 = 1. If 𝑡 = 1 can be reached with: i) the
condition on the signs of determinants being satisfied along the solution path; and ii) the
model solution being consistent with the implied 𝑠𝑡 ,𝑖 ,∀𝑡, then we can conclude that the
model is coherent and complete.

Application to the New Keynesian model with fiscal policy inertia. The system of
equations in (27) can be cast in the canonical form (30) with relevant coefficients given in
Appendix B.7. We plot regions where CC and BK local determinacy conditions are sat-
isfied in Figure 8 for different values of 𝜌𝑔 . As fiscal policy becomes more persistent, the
CC region becomes larger. Moreover, the figure shows that the parameter space where
CC conditions are satisfied largely corresponds to regions where the model satisfies BK
conditions (blue circles).
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Figure 8: Coherency and Completeness Region with Persistent Fiscal Rule
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Note: Figure shows regions where both coherency and completeness and Blanchard-Kahn conditions are
satisfied (blue circles) for different values of policy inertia, 𝜌𝑔 .
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To satisfy CC, the fiscal policy is required to be sufficiently persistent and aggressive.
First, the intuition for persistence can be drawn from the model considered in Subsection
3.1. There, we considered the special case where 𝜌𝑔 = 1, which implied that the fiscal
authority commits to a permanent policy change in reaction to deviations of inflation and
the output gap. Committing to the policy change in this case can be seen as a form of ex-
pectations management as the fiscal authority promises to change spending permanently
in response to low inflation. This promise can be seen as a factor that reduces fundamental
uncertainty in the system. Second, the policy is required to be sufficiently aggressive to
guarantee that its effect on the system is sufficiently large to eliminate multiplicity of equi-
libria. Much like the Taylor principle requires the monetary authority to react by more
than one-to-one to inflation, we require that fiscal policy is sufficiently aggressive to guar-
antee a unique solution.

Other approaches in the literature (price level targeting (PLT) in Holden (2023) and
unconventional monetary policy (UMP) in AM and Ikeda et al. (2021)) rely on a similar
mechanism to guarantee uniqueness. As argued in Holden (2023), PLT rules can restore
uniqueness in the presence of an occasionally binding ELB constraint as such a policy
implies a promise about future inflation given inflation today. If monetary policy is com-
mitted to a given price level path, the monetary authority promises that a period of low
inflation today will be followed by a period of high inflation in the future. Thus, agents
expecting high prices in the future increase their consumption in periods of low inflation
and, by implication, the system has a unique solution around the PIR absorbing state. The
commitment to higher inflation in the future delivers sufficient information about the ex-
pected dynamics of the system that alleviates uncertainty that would otherwise engender
multiplicity and, by implication, pins down the unique solutionmuch like persistent fiscal
policy.

As shown in AM, the baseline NK model with UMP as in Chen, Cúrdia, and Ferrero
(2012) satisfies the CC conditions if UMP is effective enough. This result is consistent
with the logic presented above. When the ELB is binding, the effect of UMP on model
dynamics needs to be sufficiently strong to pin down a unique solution. In this case, UMP
is used to alleviate the effects of exogenous uncertainty and ensure that the solution is
unique around the PIR absorbing state. This is in line with the restrictions we establish
for FP such that it guarantees a unique solution.
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5 Conclusion

This paper explores whether fiscal policy can restore coherency and completeness in a
baseline NK model subject to an occasionally binding constraint on the interest rate that
is generally incoherent in absence of FP. Our findings suggest that simple Ricardian FP
can restore coherency and completeness thus guaranteeing a unique solution that is also
locally determinate. We establish that, to guarantee MSV solution uniqueness and local
determinacy, FP needs to be sufficiently persistent and aggressive.

First, we analytically verify that if the fiscal authority is able to credibly commit to a
sufficiently strong countercyclical permanent policy change in response to an exogenous
disturbance, coherency and completeness of the model is restored. This conclusion is ra-
tionalised by the fact that fiscal policy is not constrained by the ELB and provides an active
policy response when monetary policy is constrained. Moreover, by committing to a per-
manent policy change, the fiscal authority is able to alleviate the fundamental uncertainty
that engenders multiplicity of equilibria in the baseline NK model.

Second, we find that the fiscal response need not imply a permanent policy change but
rather it has to be sufficiently persistent to guarantee existence and uniqueness of an MSV
solution. The persistence property of the policy rule, coupled with it being sufficiently
countercyclical, are needed to eliminate belief-driven equilibria and pin down a unique
solution. By showing this, we address the main concerns raised by Ascari andMavroeidis
(2022) about NK models featuring occasionally binding constraints.
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A Verification of Model Coherency and Completeness
This appendix provides an overview of the canonical NK model subject to the ELB, and
conditions required to adhere to the CC conditions. In other words, we illustrate the con-
ditions that the model must satisfy to have a unique MSV solution in the presence of oc-
casionally binding constraints.

A.1 Methodology of Ascari and Mavroeidis (2022)
As stated in AM, many solution methods of log-linearised models which feature the ELB,
such as Eggertsson andWoodford (2003), Guerrieri and Iacoviello (2015), Kulish, Morley,
and Robinson (2017), Eggertsson and Singh (2019), and Holden (2023), can be verified
for coherency in a simple manner. DSGEmodels can be written in the following canonical
form:20

0 = 𝑨𝑠𝑡𝒀𝑡 + 𝑩𝑠𝑡𝒀𝑡+1|𝑡 + 𝑪𝑠𝑡𝑿𝑡 + 𝑫𝑠𝑡𝑿𝑡+1|𝑡 + 𝑯𝑠𝑡𝒀𝑡−1,

𝑠𝑡 = 1
(
𝒂⊤𝒀𝑡 + 𝒃⊤𝒀𝑡+1|𝑡 + 𝒄⊤𝑿𝑡 + 𝒅⊤𝑿𝑡+1|𝑡 + 𝒉⊤𝒀𝑡−1 > 0

)
,

(35)

The key contribution of the paper by AM is that it analyses (35) with rational expecta-
tions and Markovian shocks with discrete support. This was as opposed to GLM which
analysed the coherency of a system like (35) when 𝑩𝑠𝑡 = 𝑯𝑠𝑡 = 𝑶 and 𝒃 = 𝒉 = 0.
In other words, with no endogenous state variables and no expectations on future real-
isations of the endogenous variables. If the model features endogenous state variables,
𝑯𝑠𝑡 ≠ 𝑶 , 𝒉 ≠ 0, the canonical form (35) is not piecewise linear and, thus, the standard
approach presented by GLM does not apply.

Coherency requires that for the system (35) there exists some function 𝑓 (·) such that an
MSV solution can be represented as 𝒀𝑡 = 𝑓 (𝑿𝑡). Assume that the exogenous states 𝑿𝑡 are
𝑘-state stationary first-orderMarkov processeswith transition kernel𝑲. Stack the possible
states of 𝑿𝑡 for states 𝑖 = 1, .., 𝑘 into a 𝑛𝑥 × 𝑘 matrix X. Then, let 𝒆𝑖 denote the 𝑖-th column
of the 𝑘 × 𝑘 identity matrix 𝑰𝑘 , such that X𝒆𝑖 , the 𝑖-th column of X, is the 𝑖-th state of 𝑿𝑡 .21
Then define Y as an 𝑛 × 𝑘 matrix whose 𝑖-th column, Y𝒆𝑖 , corresponds to 𝑿𝑡 = X𝒆𝑖 along
an MSV solution. Thus, along an MSV solution we have:

E[𝒀𝑡+1 |𝒀𝑡 = Y𝒆𝑖] = E[𝒀𝑡+1 |𝑿𝑡 = X𝒆𝑖] = Y𝑲⊤𝒆𝑖 .

Substituting this into (35), yields Equation (2) in the main text.

Example: Simple FisherianModel. To demonstrate the methods of AM and GLM, con-
sider the simple model taken from Section 2 of Aruoba, Cuba-Borda, and Schorfheide

20. Here 𝑯𝑠𝑡 is an 𝑛 × 𝑛 coefficient matrix and 𝒉 is a coefficient vector.
21. The elements of the transition kernel 𝑲 are 𝑲𝑖 𝑗 = Pr(𝑿𝑡+1 = X𝒆 𝑗 |𝑿𝑡 = X𝒆𝑖) and hence, E𝑡[𝑿𝑡+1 |𝑿𝑡 =

X𝒆𝑖] = X𝑲⊤𝒆𝑖 .
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(2018), which consists of the Euler equation,

1 = E𝑡

[
𝑀𝑡 ,𝑡+1

1 + 𝑖𝑡

𝜋𝑡+1

]
, (36)

and a TR that only targets inflation,

1 + 𝑖𝑡 = max
{
1, 𝑟𝜋∗

(𝜋𝑡

𝜋∗

)𝜙𝜋
}
, 𝜙𝜋 > 1, (37)

where𝑀𝑡 ,𝑡+1 is the stochastic discount factor and the steady value of the gross real interest
rate is given by 𝑟 = 1/𝑀 = (1 + 𝑖)/𝜋. The law of motion of 𝑀𝑡 ,𝑡+1 is given by a 2-state
Markov process with a transitory state 𝑟−1 exp(−𝑟𝐿) > 𝑟−1 and an absorbing state 𝑟−1 with
transition probabilities 𝑝 and 𝑞, respectively.22

Combine the two equations above and log-linearise about the non-stochastic steady
state to get

E𝑡𝜋̂𝑡+1 = E𝑡𝑀̂𝑡 ,𝑡+1 +max
{
−𝜇, 𝜙𝜋𝜋̂𝑡

}
,

which can be cast in canonical form (2) as follows:

0 =

(
−𝜙𝜋

(
𝜋̂1
𝑡 𝜋̂2

𝑡

)
+

(
𝜋̂1
𝑡+1 𝜋̂2

𝑡+1
)
𝑲⊤ +

(
−1 0

) ( exp(−𝑟𝐿)
𝑟 0
1 1

)
𝑲⊤

)
𝒆𝑖 ,

if 𝑠𝑡 = 1
(
{𝜙𝜋𝜋̂𝑡 + 𝜇 > 0}

)
. However, if 𝑠𝑡 = 1

(
{𝜙𝜋𝜋̂𝑡 + 𝜇 < 0}

)
then we have

0 =

( (
𝜋̂1
𝑡+1 𝜋̂2

𝑡+1
)
𝑲⊤ +

(
0 𝜇

) ( exp(−𝑟𝐿)
𝑟 0
1 1

)
+

(
−1 0

) ( exp(−𝑟𝐿)
𝑟 0
1 1

)
𝑲⊤

)
𝒆𝑖 ,

where the transition matrix 𝑲 is

𝑲 =

(
𝑝 1 − 𝑝

1 − 𝑞 𝑞

)
, (38)

andwhereY𝑡 = 𝜋̂𝑡 and𝑿𝑡+1 =
(
𝑀̂𝑡 ,𝑡+1 1

)⊤
. The coefficientmatrices23 are given as𝑨0 = 0,

𝑨1 = −𝜙𝜋, 𝑩0 = 𝑩1 = 1, 𝑪0 =
(
0 𝜇

)
, 𝑪1 =

(
0 0

)
, and 𝑫0 = 𝑫1 =

(
−1 0

)
. The coefficient

vectors are given as 𝒂 = 𝜙𝜋, 𝒃 = 0, 𝒄 =
(
0 𝜇

)⊤, and 𝒅 =
(
0 0

)⊤.
22. 𝑟𝐿 < 0 is a simple negative real interest rate shock, representing a temporary liquidity trap.
23. In this example, since 𝑛 = 1, some of the coefficient matrices are scalars.
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The coefficient matricesA𝐽 in (3) are given by

A𝐽1 = 𝑨1𝑰2 + 𝑩1𝑲 , 𝐽1 = {1, 2},
A𝐽2 = 𝒆1𝒆⊤1 A𝐽4 + 𝒆2𝒆⊤2 A𝐽1 , 𝐽2 = {2},
A𝐽3 = 𝒆2𝒆⊤2 A𝐽4 + 𝒆1𝒆⊤1 A𝐽1 , 𝐽3 = {1},
A𝐽4 = 𝑨0𝑰2 + 𝑩0𝑲 , 𝐽4 = ∅.

(39)

As 𝐽 ⊆ {1, ..., 𝑘} and 𝑘 = 2 – and 𝐽 contains all configurations of combinations of the 𝑘

states – we can think of the above equations as transitions between positive and negative
states. Specifically, positive (PIR) and zero interest rate (ZIR) states: A𝐽1 and 𝐽1 = {1, 2}
is associated with being in the PIR state and remaining in the PIR state, A𝐽2 and 𝐽2 = {2}
is associated with being the ZIR state and transitioning to the PIR state, A𝐽3 and 𝐽3 = {1}
is associated with being in the PIR state and transitioning to the ZIR state, and A𝐽4 and
𝐽4 = {∅} is associated with being in the ZIR state and remaining in the ZIR state.

Substituting the coefficient matrices into (42), the determinants of theA𝐽 are:

|A𝐽1 | = (𝜙𝜋 − 1)(1 − 𝑝 − 𝑞 + 𝜙𝜋),
|A𝐽2 | = 𝑝(1 − 𝜙𝜋) + 𝑞 − 1,
|A𝐽3 | = 𝑝 − 1 + 𝑞(1 − 𝜙𝜋),
|A𝐽4 | = 𝑝 + 𝑞 − 1.

(40)

Since 𝜙𝜋 > 0 (satisfaction of the Taylor principle), and 0 ≤ 𝑝, 𝑞 ≤ 1, it is straightforward
to see that |A𝐽1 | > 0 and |A𝐽2 |, |A𝐽3 | < 0, and so this is a violation of the CC conditions
according to Theorem 1 of GLM.

A.2 Coherency andCompleteness of theCanonicalNewKeynesianModel
Below, we provide a sketch of the insight of AM as applied to the canonical NK model,
(4), but for simplicity 𝜙𝑦 = 0. Then assume as before that 𝑘 = 2 and the transition kernel
is given by

𝑲 =

(
𝑝 1 − 𝑝

1 − 𝑞 𝑞

)
. (41)

The coefficient matricesA𝐽 in (3) are given by

A𝐽1 = 𝑨1𝑰2 + 𝑩1𝑲 , 𝐽1 = {1, 2} (PIR,PIR),
A𝐽2 = 𝒆1𝒆⊤1 A𝐽4 + 𝒆2𝒆⊤2 A𝐽1 , 𝐽2 = {2} (ZIR,PIR),
A𝐽3 = 𝒆2𝒆⊤2 A𝐽4 + 𝒆1𝒆⊤1 A𝐽1 , 𝐽3 = {1} (PIR,ZIR),
A𝐽4 = 𝑨0𝑰2 + 𝑩0𝑲 , 𝐽4 = ∅ (ZIR,ZIR).

(42)

As 𝐽 ⊆ {1, ..., 𝑘} and 𝑘 = 2 – and 𝐽 contains all configurations of combinations of the 𝑘

states – we can think of the above equations as transitions between positive and negative
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states. Specifically, positive (PIR) and zero interest rate (ZIR) states: A𝐽1 and 𝐽1 = {1, 2}
is associated with being in the PIR state and remaining in the PIR state, A𝐽2 and 𝐽2 = {2}
is associated with being the ZIR state and transitioning to the PIR state, A𝐽3 and 𝐽3 = {1}
is associated with being in the PIR state and transitioning to the ZIR state, and A𝐽4 and
𝐽4 = {∅} is associated with being in the ZIR state and remaining in the ZIR state. The
relevant coefficient matrices of the canonical form (2) are given by

𝑨0 =

(
1 −𝜅
0 1

)
, 𝑨1 =

(
1 −𝜅
𝜙𝜋

𝜎 1

)
, 𝑩0 = 𝑩1 =

(
−𝛽 0
− 1

𝜎 −1

)
.

Observe that, in the special case where 𝑝 = 𝑞 = 1, the determinants ofA𝐽1 and A𝐽4 are:

|A𝐽1 | =
����1 − 𝛽 −𝜅
𝜙𝜋−1
𝜎 0

���� = 𝜅(𝜙𝜋 − 1)
𝜎

> 0, |A𝐽4 | =
����1 − 𝛽 −𝜅
− 1

𝜎 0

���� = −𝜅
𝜎
< 0. (43)

Thus, we observe that with an active TR (𝜙𝜋 > 1) the function 𝐹(Y) is not invertible and,
hence, the model is generally incomplete. Additionally, in Appendix A.3 we show an
analytical derivation of the CC conditions. Denoting 𝜙∗

𝜋 as

𝜙∗
𝜋 = 𝑝 + 𝑞 − 1 − 𝜎

𝜅
[1 − 𝛽(𝑝 + 𝑞 − 1)](2 − 𝑝 − 𝑞),

then the model satisfies the CC conditions when

𝜙𝜋 < 𝜙∗
𝜋 , if 𝜙∗

𝜋 > 0, (44a)
𝜙𝜋 < 1, if 𝜙∗

𝜋 < 0. (44b)

A.3 Analytical Derivation of CC Conditions
To attain an analytical expression for the CC conditions for the baseline New Keynesian
model, we first look for a solution of the form 𝜋̂𝑡 = 𝑓𝜋(𝜀𝑡) and 𝑦̂𝑡 = 𝑓𝑦(𝜀𝑡). Let 𝜀𝑡 de-
note the vector 𝑘 states of the shock and similarly for the solutions 𝜋 and 𝑦. Denote 𝑲
as the transition kernel of the Markov chain for 𝜀𝑡 . Then, with some abuse of notation,
define E𝑡𝜋̂𝑡+1 = 𝑲𝝅 and E𝑡 𝑦̂𝑡+1 = 𝑲𝒚, then rewrite the model equations (4a)-(4c) as the
following:

𝑲𝒚 = 𝒚 + 1
𝜎
(𝒊 − 𝑲𝝅) − 𝜺,

𝝅 = 𝛽𝑲𝝅 + 𝜅𝒚,

𝒊 = max
{
−𝜇𝜾, 𝜙𝜋𝝅

}
,

where for ease of exposition we have assumed that 𝑢𝑡 = 0 and 𝜙𝑦 = 0. To clarify the
notation: symbols in bold are either vectors or matrices, and 𝜾 is a 𝑘-length unit vector.
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The DISE can be written as:

(𝑰 − 𝑲)𝒚 = − 1
𝜎

(
max

{
−𝜇𝜾, 𝜙𝜋𝝅

}
− 𝑲𝝅

)
+ 𝜺.

Then, premultiply the NKPC by (𝑰 − 𝑲) to get

(𝑰 − 𝑲)𝝅 = 𝜅(𝑰 − 𝑲)𝒚 + 𝛽(𝑰 − 𝑲)𝑲𝝅.

Then, substitute the expression for (𝑰−𝑲)𝒚 from the DISE and do some slight rearranging
to write: [

𝑰 − 𝑲 − 𝜅
𝜎
𝑲 − 𝛽(𝑰 − 𝑲)𝑲

]
𝝅 = −𝜅

𝜎
max

{
−𝜇𝜾, 𝜙𝜋𝝅

}
+ 𝜅𝜺.

Continue rearranging this expression:[
𝑰 − 𝑲 − 𝜅

𝜎
𝑲 − 𝛽(𝑰 − 𝑲)𝑲

]
𝝅 =

𝜅𝜇

𝜎
𝜾 − 𝜅

𝜎
max

{
0, 𝜙𝜋𝝅 + 𝜇𝜾

}
+ 𝜅𝜺[

𝑰 − 𝑲 − 𝜅
𝜎
𝑲 − 𝛽(𝑰 − 𝑲)𝑲

]
𝝅 = (1 − 1)

[
𝑰 − 𝑲 − 𝜅

𝜎
𝑲 − 𝛽(𝑰 − 𝑲)𝑲

] 𝜇

𝜙𝜋
𝜾

+
𝜅𝜇

𝜎
𝜾 − 𝜅

𝜎
max

{
0, 𝜙𝜋

(
𝝅 +

𝜇

𝜙𝜋
𝜾

)}
+ 𝜅𝜺[

𝑰 − 𝑲 − 𝜅
𝜎
𝑲 − 𝛽(𝑰 − 𝑲)𝑲

] (
𝝅 +

𝜇

𝜙𝜋
𝜾

)
=

[
𝑰 − 𝑲 − 𝜅

𝜎
𝑲 − 𝛽(𝑰 − 𝑲)𝑲

] 𝜇

𝜙𝜋
𝜾

+ 𝜅𝜇

𝜎
𝜾 − 𝜅

𝜎
max

{
0, 𝜙𝜋

(
𝝅 + 𝜇

𝜙𝜋
𝜾

)}
+ 𝜅𝜺.

But since [(𝑰 − 𝑲) − 𝑎𝑲 − 𝑏(𝑰 − 𝑲)𝑲] 𝜾 = −𝑎𝜾 for generic scalars 𝑎 and 𝑏, we can write:[
𝑰 − 𝑲 − 𝜅

𝜎
𝑲 − 𝛽(𝑰 − 𝑲)𝑲

] (
𝝅 + 𝜇

𝜙𝜋
𝜾

)
= −𝜅

𝜎

𝜇

𝜙𝜋
𝜾 + 𝜅𝜇

𝜎
𝜾 + 𝜅𝜺

−max
{
0,

𝜅𝜙𝜋

𝜎

(
𝝅 +

𝜇

𝜙𝜋
𝜾

)}
[
𝑰 − 𝑲 − 𝜅

𝜎
𝑲 − 𝛽(𝑰 − 𝑲)𝑲

] (
𝝅 +

𝜇

𝜙𝜋
𝜾

)
=

𝜅𝜇

𝜎

(
𝜙𝜋 − 1
𝜙𝜋

)
𝜾 + 𝜅𝜺

−max
{
0,

𝜅𝜙𝜋

𝜎

(
𝝅 +

𝜇

𝜙𝜋
𝜾

)}
[
𝑲 − 𝑰 + 𝜅

𝜎
𝑲 + 𝛽(𝑰 − 𝑲)𝑲

] (
𝝅 + 𝜇

𝜙𝜋
𝜾

)
=

𝜅𝜇

𝜎

(
1 − 𝜙𝜋

𝜙𝜋

)
𝜾 − 𝜅𝜺

+max
{
0,

𝜅𝜙𝜋

𝜎

(
𝝅 +

𝜇

𝜙𝜋
𝜾

)}
.
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The above system can be generically written as

𝑩𝒗 = 𝒃 +max {0,𝑫𝒗} , (45)

where

𝑩 = 𝑲 − 𝑰 + 𝜅
𝜎
𝑲 + 𝛽(𝑰 − 𝑲)𝑲 ,

𝒗 = 𝝅 + 𝜇

𝜙𝜋
𝜾,

𝒃 =
𝜅𝜇

𝜎

(
1 − 𝜙𝜋

𝜙𝜋

)
𝜾 − 𝜅𝜺,

𝑫 =
𝜅𝜙𝜋

𝜎
𝑰 .

The CC conditions can be analytical derived in the case that 𝑘 = 2. We thus have a piece-
wise linear system in four orthants that can be written as:{

R1 = {(𝑣1, 𝑣2) : 𝑣1 ≥ 0, 𝑣2 ≥ 0},
𝑨1 = 𝑩 − 𝑫 ,
R2 = {(𝑣1, 𝑣2) : 𝑣1 ≥ 0, 𝑣2 < 0},

𝑨2 = 𝑩 −
(
𝜅𝜙𝜋

𝜎 0
0 0

)
,{

R3 = {(𝑣1, 𝑣2) : 𝑣1 < 0, 𝑣2 < 0},
𝑨3 = 𝑩,
R4 = {(𝑣1, 𝑣2) : 𝑣1 < 0, 𝑣2 ≥ 0},

𝑨4 = 𝑩 −
(
0 0
0 𝜅𝜙𝜋

𝜎

)
.

Let 𝑲 be defined as:
𝑲 =

(
𝑝 1 − 𝑝

1 − 𝑞 𝑞

)
.

Theorem 1 of Gourieroux, Laffont, andMonfort (1980) states that the system of equations
(45) is coherent and complete if and only if all the determinants of the matrices below
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have the same sign:

det𝑨1 =
𝜅(1 − 𝜙𝜋)

𝜎

[
(𝑝 + 𝑞 − 1)𝜅

𝜎
+ 𝑎(𝑝 + 𝑞 − 2) −

𝜅𝜙𝜋

𝜎

]
,

det𝑨2 =
𝜅
𝜎

[
𝑎(𝑝 − 2) + (𝑎𝜎 − 𝜅𝜙𝜋)

𝑞

𝜎
− 𝑎(𝑞 − 1)𝜙𝜋 + (𝑝 + 𝑞 − 1)𝜅

𝜎

]
,

det𝑨3 =
𝜅
𝜎

[
(𝑝 + 𝑞 − 1)𝜅

𝜎
+ 𝑎(𝑝 + 𝑞 − 2)

]
,

det𝑨4 =
𝜅
𝜎

[
𝑎(𝑞 − 2) + (𝑎𝜎 − 𝜅𝜙𝜋)

𝑝

𝜎
− 𝑎(𝑝 − 1)𝜙𝜋 + (𝑝 + 𝑞 − 1)𝜅

𝜎

]
,

where 𝑎 = (1 − 𝛽(𝑝 + 𝑞 − 1)). Alternatively, we could write the above matrices more
compactly as:

det𝑨1 = (1 − 𝜙𝜋)
(
det 𝑩 −

𝜅2𝜙𝜋

𝜎2

)
, (46)

det𝑨2 = det 𝑩 +
𝜅𝜙𝜋

𝜎

[
(1 − 𝑞)(1 + 𝛽(1 − 𝑝 − 𝑞)) − 𝜅

𝜎
𝑞
]
, (47)

det𝑨3 = det 𝑩, (48)

det𝑨4 = det 𝑩 +
𝜅𝜙𝜋

𝜎

[
(1 − 𝑝)(1 + 𝛽(1 − 𝑝 − 𝑞)) − 𝜅

𝜎
𝑝
]
. (49)

It is evident that the CC conditions will crucially depend on the sign of det 𝑩, which we
can write as:

det 𝑩 =
𝜅
𝜎

[
(𝑝 + 𝑞 − 1)𝜅

𝜎
− (1 − 𝛽(𝑝 + 𝑞 − 1))(2 − 𝑝 − 𝑞)

]
. (50)

Observing this quantity, we know that 𝜅
𝜎 > 0 and that (1 − 𝛽(𝑝 + 𝑞 − 1))(2 − 𝑝 − 𝑞) > 0.

Thus, we need to check the relative value of (𝑝 + 𝑞 − 1)𝜅𝜎 to see if det 𝑩 is greater or less
than zero. We thus need to check two cases:

Case 1: (𝑝 + 𝑞 − 1)𝜅𝜎 > (1 − 𝛽(𝑝 + 𝑞 − 1))(2 − 𝑝 − 𝑞). The RHS of the inequality is always
greater than 0, thus implying:

𝑝 + 𝑞 − 1 > 0 =⇒ det 𝑩 > 0.

Given this, what does it mean for det𝑨𝑖 for 𝑖 = {1, 2, 4}? First, rearrange the quantities
for det𝑨1 > 0 in Equation (46) to write:

𝜙𝜋 <
𝜎2

𝜅2 det 𝑩,
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as in det𝑨1 > 0 if and only if

0 < (1 − 𝜙𝜋)(det 𝑩 − 𝜅2

𝜎2
𝜙𝜋),

∴ 𝜙𝜋 < min
{
1, 𝜎

2

𝜅2 det 𝑩
}
⇔ 𝜙𝜋 > max

{
1, 𝜎

2

𝜅2 det 𝑩
}
.

For det𝑨2 we need

𝜅𝜙𝜋

𝜎

[
(1 − 𝑞)(1 − 𝛽(𝑝 + 𝑞 − 1)) − 𝜅

𝜎
𝑞
]
+ det 𝑩 > 0.

If the term in the square brackets is greater than zero, then det𝑨2 > 0,∀𝜙𝜋 ≥ 0, so long
as det 𝑩 > 0 (which was shown above). But what if this bracketed quantity is less than
zero? Then, write det𝑨2 as:

0 <
𝜅𝜙𝜋

𝜎


(1 − 𝑞)(1 − 𝛽(𝑝 + 𝑞 − 1)) − 𝜅

𝜎
𝑞︸                                 ︷︷                                 ︸

<0


+ 𝜅

𝜎

[
(𝑝 + 𝑞 − 1)𝜅

𝜎
− (1 − 𝛽(𝑝 + 𝑞 − 1))(2 − 𝑝 − 𝑞)

]
,

where we can write:

𝜙𝜋 <
(𝑝 + 𝑞 − 1)𝜅𝜎 − (1 − 𝛽(𝑝 + 𝑞 − 1))(2 − 𝑝 − 𝑞)

𝜅
𝜎
𝑞 − (1 − 𝑞)(1 − 𝛽(𝑝 + 𝑞 − 1))︸                                 ︷︷                                 ︸

>0

< 1.

Use (A.3) to then write:

𝜙𝜋 <
𝜎2

𝜅2 det 𝑩

< 𝑝 + 𝑞 − 1 − 𝜎
𝜅
((1 − 𝛽(𝑝 + 𝑞 − 1))(2 − 𝑝 − 𝑞).

A symmetric argument holds for det𝑨4.

Case 2: (𝑝 + 𝑞 − 1)𝜅𝜎 < (1− 𝛽(𝑝 + 𝑞 − 1))(2− 𝑝 − 𝑞). This case now assumes that det 𝑩 < 0,
so we need all the other determinants to be negative too.

For det𝑨1, clearly for any 0 ≤ 𝜙𝜋 < 1, det𝑨1 < 0.
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det𝑨2 is negative ∀𝜙𝜋 ≥ 0 if and only if

(1 − 𝑞)(1 + 𝛽(1 − 𝑝 − 𝑞)) − 𝜅
𝜎
𝑞 < 0.

But if
(1 − 𝑞)(1 + 𝛽(1 − 𝑝 − 𝑞)) − 𝜅

𝜎
𝑞 > 0,

then we have

0 > det 𝑩 +
𝜅𝜙𝜋

𝜎

[
(1 − 𝑞)(1 + 𝛽(1 − 𝑝 − 𝑞)) − 𝜅

𝜎
𝑞
]

𝜙𝜋 < −𝜎
𝜅

det 𝑩[
(1 − 𝑞)(1 + 𝛽(1 − 𝑝 − 𝑞)) − 𝜅

𝜎 𝑞
] < 0.

Denote 𝜙∗
𝜋 as

𝜙∗
𝜋 = 𝑝 + 𝑞 − 1 − 𝜎

𝜅
(1 − 𝛽(𝑝 + 𝑞 − 1))(2 − 𝑝 − 𝑞),

then we can write the region for which the baseline NKmodel satisfies the CC conditions
as: {

𝜙𝜋 < 𝜙∗
𝜋 , if 𝜙∗

𝜋 > 0,
𝜙𝜋 < 1, if 𝜙∗

𝜋 < 0.

These are the conditions in (44).

A.3.1 Derivation for Graphical Representation

First consider the absorbing state when 𝜀 = 0, and also when 𝜙𝑦 = 0, 𝑢𝑡 = 0. From
(4a)-(4c), we can write 𝐴𝑆 as:

𝜋̂ =
𝜅

1 − 𝛽
𝑦̂. (51)

Meanwhile, from the DISE we have:

𝜋̂ =

{
𝜙𝜋𝜋̂ TR,
−𝜇 ELB.

Substituting 𝐴𝑆 into the above expression gives 𝐴𝐷:

𝜋̂ =

{
𝜅𝜙𝜋

1−𝛽 𝑦̂ 𝐴𝐷𝑇𝑅 ,

−𝜇 𝐴𝐷𝐸𝐿𝐵.
(52)

We plot 𝐴𝑆 and 𝐴𝐷 in Figure 1.
Next, consider the transitory state when 𝜀 =

𝜌
𝜎 𝑟

𝑇 ≠ 0.
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PIR absorbing state. At time 𝑡 the economy is in a transitory state. With probability 𝑝

the economy remains in the transitory state, and with (1 − 𝑝) the economy moves to the
PIR absorbing state. From (4b), we can write:

𝜋̂𝑇 = 𝜅 𝑦̂𝑇 + 𝑝𝛽𝜋̂𝑇 ,

where the second term on the RHS comes from the fact that in period 𝑡 + 1 you may be in
a transitory state where 𝜋 ≠ 0. Thus, 𝐴𝑆 is:

𝜋̂𝑇 =
𝜅

1 − 𝑝𝛽
𝑦̂𝑇 . (53)

For 𝐴𝐷, begin by writing the DISE as:

𝑦̂𝑇 = 𝑝𝑦̂𝑇 − 1
𝜎
(𝑖 − 𝑝𝜋̂𝑇) + 𝜀.

Rearrange and substitute in (4c) and 𝜀 =
𝑝

𝜎 𝑟
𝑇 to get 𝐴𝐷:

𝜋̂𝑇 =

{ 𝜎(1−𝑝)
𝑝−𝜙𝑇

𝜋
𝑦̂𝑇 − 𝑝

𝑝−𝜙𝜋
𝑟𝑇 𝐴𝐷𝑇𝑅 for 𝜋̂𝑇 ≥ − 𝜇

𝜙𝜋
,

𝜎(1−𝑝)
𝑝 𝑦̂𝑇 − 𝜇

𝑝 − 𝑟𝑇 𝐴𝐷𝐸𝐿𝐵 for 𝜋̂𝑇 ≤ − 𝜇
𝜙𝜋

.
(54)

ZIR absorbing state. Here in period 𝑡 the economy is in a transitory state. With probably
𝑝 the economy can remain in a transitory state, and with (1 − 𝑝) it can move to a ZIR
absorbing state. Therefore, from (4b), 𝐴𝑆 can be written as:

𝜋̂𝑇 = 𝛽[𝑝𝜋̂𝑇 + (1 − 𝑝)(−𝜇)] + 𝜅 𝑦̂𝑇

=
𝜅

1 − 𝑝𝛽
𝑦̂𝑇 −

𝛽(1 − 𝑝)
1 − 𝑝𝛽

𝜇.
(55)

To find 𝐴𝐷, first begin by writing the DISE as:

𝑦̂𝑇 =

[
𝑝𝑦̂𝑇 + (1 − 𝑝)

(−𝜇(1 − 𝛽)
𝜅

)]
− 1

𝜎

[
𝑖 −

(
𝑝𝜋̂𝑇 + (1 − 𝑝)(−𝜇)

)]
+ 𝜀,

then substitute in (4c) and the 𝜀 to get 𝐴𝐷:

𝜋̂𝑇 =


𝜎(1−𝑝)
𝑝−𝜙𝜋

𝑦̂𝑇 + 1−𝑝
𝑝−𝜙𝜋

[
(1−𝛽)
𝜅 + 1

]
𝜇 − 𝑝

𝑝−𝜙𝜋
𝑟𝑇 𝐴𝐷𝑇𝑅 for 𝜋𝑇 ≥ − 𝜇

𝜙𝜋
,

𝜎(1−𝑝)
𝑝 𝑦̂𝑇 + 1−𝑝

𝑝

[
(1−𝛽)𝜎

𝜅 + 1
]
𝜇 − 𝜇

𝑝 − 𝑟𝑇 𝐴𝐷𝐸𝐿𝐵 for 𝜋̂𝑇 ≤ − 𝜇
𝜙𝜋

.
(56)
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To find 𝜃 simply divide the slop of 𝐴𝐷𝑇𝑅 by the slope of 𝐴𝑆:

𝜃 =
𝜕𝐴𝐷𝐸𝐿𝐵/𝜕𝑦̂𝑇

𝜕𝐴𝑆/𝜕𝑦̂𝑇

=

1
𝑝 − 𝜎

𝜅
1−𝑝𝛽

=
𝜎(1 − 𝑝)(1 − 𝑝𝛽)

𝑝𝜅
.

We plot 𝐴𝐷 and 𝐴𝑆 for when the economy is in the transitory state and with PIR and ZIR
absorbing states for 𝜃 > 1 and 𝜃 < 1 in Figure 2.

A.3.2 Proof of Support Restrictions

For the case of 𝜃 > 1, the two solutions imply that

1
𝑟𝜋∗ ≤ 1

is a necessary support restrictions. Why? If 𝑟𝜋∗ < 1, then either the gross real interest rate,
the gross target rate of inflation, or their product is less than one. But this cannot be the
case as we define 𝜇 = ln(𝑟𝜋∗).

For the case of 𝜃 < 1, we need further support restrictions to ensure coherency. This
can be found by finding the point at which 𝐴𝐷 and 𝐴𝑆 intersect at the kink of 𝐴𝐷. The
case with a PIR absorbing state is analytically more tractable, so we focus on that.

𝐴𝐷 = 𝐴𝑆 when 𝜋𝑇 = − 𝜇
𝜙𝜋

, and when we wish to find shock size 𝑟𝑇 = 𝑟𝑇 such that the
equations have a solution for all −𝑟𝑇 ≤ −𝑟𝑇 . Hence, the cutoff can be found by setting 𝐴𝑆

and 𝐴𝐷𝑇𝑅 equal:

𝐴𝑆 : 𝑦̂𝑇 =
(1 − 𝑝𝛽)

𝜅
𝜋̂𝑇

𝐴𝐷𝑇𝑅 𝑦̂𝑇 =
(𝜙𝜋 − 𝑝)
𝜎(1 − 𝑝) 𝜋̂

𝑇 +
𝑝

𝜎(1 − 𝑝) 𝑟
𝑇 .

Substitute in 𝜋̂𝑇 = − 𝜇
𝜙𝜋

and rearrange to get:

−𝑟𝑇 = 𝜇

(
𝜃
𝜙𝜋

+
𝜙𝜋 − 𝑝

𝑝𝜙𝜋

)
. (57)
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A.4 Coherency and Completeness with an Endogenous State
We no longer assume that 𝑯𝑠𝑡 = 𝑶 and 𝒉 = 0 in (35), but maintain the assumption that 𝑿𝑡

follows a 𝑘-state stationaryMarkov process. This implies that, as before, the 𝑖-th column of
X gives the value of 𝑿𝑡 for a given state 𝑖. However, as stipulated by AM,with endogenous
states the support of 𝒀𝑡 will vary endogenously over time along the MSV solution given
by 𝒀𝑡 = 𝑓 (𝒀𝑡−1,𝑿𝑡). This implies that the solution can no longer be characterised by a
time invariant matrix Y. In other words, despite the variables 𝑿𝑡 being time invariant (by
definition as they are purely forward looking), the support of 𝒀𝑡 must now be a function
of 𝒀𝑡−1, too. With endogenous states, along an MSV solution we have:

E𝑡 [𝒀𝑡+1 |𝒀𝑡 = Y𝑡𝒆𝑖 ,𝑿𝑡 = X𝒆𝑖] = Y𝑖
𝑡+1𝑲

⊤𝒆𝑖 ,

Starting from terminal date, 𝑇, the model solution is:

Y𝑇 = G𝐽0𝑦𝑇−1 + Z𝐽0 ,

where G𝐽0 and Z𝐽0 can be solved from (30):

0 = 𝑨𝑠𝑡 ,𝑖G𝒆𝑖 + 𝒉𝑠𝑡 ,𝑖 + 𝑩𝑠𝑡 ,𝑖G𝑲⊤𝒆𝑖𝒈⊤G𝒆𝑖 , (58)
0 =

(
𝑨𝑠𝑡 ,1Z + 𝑩𝑠𝑡 ,𝑖G𝑲⊤𝒆𝑖𝒈⊤Z + 𝑩𝑠𝑡 ,𝑖Z𝑲

⊤ + 𝑪𝑠𝑡 ,𝑖X + 𝑫𝑠𝑡 ,𝑖X𝑲
⊤)

𝒆𝑖 , (59)

∀𝑖 = 1, ..., 𝑘.
Y𝑇 is a function ofG𝐽0 and Z𝐽0 , which are both treated as known.24 Thus, Y𝑇 is known

and we can solve for Y𝑇−1 from

0 =
(
𝑨𝑠𝑇−1 ,𝑖 + 𝑩𝑠𝑇−1 ,𝑖G𝐽0𝑲

⊤𝒆𝑖𝒈⊤Y𝑇−1𝒆𝑖
)

+
(
𝑩𝑠𝑇−1 ,𝑖Z𝐽0𝑲

⊤ + 𝑪𝑠𝑇−1 ,𝑖X + 𝑫𝑠𝑇−1 ,𝑖X𝑲
⊤)

𝒆𝑖 + 𝒉𝑠𝑇−1 ,𝑖𝑦𝑇−2.

For every 𝑡 ≤ 𝑇 the determinants relevant for CC conditions are given by

|A𝐽0𝐽1 | =
𝑘∏
𝑖

det
(
𝑨𝑠𝑇−1 ,𝑖 + 𝑩𝑠𝑇−1 ,𝑖G𝐽0𝑲

⊤𝒆𝑖𝒈⊤
)
.

24. In practice G𝐽0 and Z𝐽0 are precalculated as they are not time-varying per-se but are state dependent.
For example, if 𝐽0 always corresponds to the PIR case, then the ELB is never binding and G𝐽0 and Z𝐽0 can
easily be obtained from the model policy function (Blanchard and Kahn, 1980).
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If 𝑘 = 2, the determinants can be rewritten as

|A𝐽0𝐽1 | = det
(
𝑨1 + 𝑩1G𝐽0𝑲

⊤𝒆1𝒈⊤
)
det

(
𝑨1 + 𝑩1G𝐽0𝑲

⊤𝒆2𝒈⊤
)
, 𝐽1 = {1, 2} (PIR,PIR),

|A𝐽0𝐽1 | = det
(
𝑨0 + 𝑩0G𝐽0𝑲

⊤𝒆1𝒈⊤
)
det

(
𝑨1 + 𝑩1G𝐽0𝑲

⊤𝒆2𝒈⊤
)
, 𝐽1 = {2} (ZIR,PIR),

|A𝐽0𝐽1 | = det
(
𝑨1 + 𝑩1G𝐽0𝑲

⊤𝒆1𝒈⊤
)
det

(
𝑨0 + 𝑩0G𝐽0𝑲

⊤𝒆2𝒈⊤
)
, 𝐽1 = {1} (PIR,ZIR),

|A𝐽0𝐽1 | = det
(
𝑨0 + 𝑩0G𝐽0𝑲

⊤𝒆1𝒈⊤
)
det

(
𝑨0 + 𝑩0G𝐽0𝑲

⊤𝒆2𝒈⊤
)
, 𝐽1 = {∅} (ZIR,ZIR).

(60)
If the model is coherent and complete, use (31), with (58) and (59), to solve for Y𝑇−1

as a function of 𝑦𝑇−2:

Y𝑇−1𝒆𝑖 = −
(
𝑨𝑠𝑇−1 ,𝑖 + 𝑩𝑠𝑇−1 ,𝑖G𝐽0𝑲

⊤𝒆𝑖𝒈⊤
)−1[ (

𝑩𝑠𝑇−1 ,𝑖Z𝐽0𝑲
⊤ + 𝑪𝑠𝑇−1 ,𝑖X + 𝑫𝑠𝑇−1 ,𝑖X𝑲

⊤)
𝒆𝑖 + 𝒉𝑠𝑇−1 ,𝑖𝑦𝑇−2

]
,

∀𝑖 = 1, ..., 𝑘.
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B A New Keynesian Model with Fiscal Policy
Households. The economy is populatedwith households indexedwith 𝑖 on a continuum
of measure one. The households gain utility from consumption, dislike labour, and have
access to one-period risk free bonds. The optimisation problem of the households is thus:

max
{𝐶𝑡 ,𝐿𝑡 ,𝐵𝑡}∞𝑡=0

E0

∞∑
𝑡=0

𝛽𝑡

(
𝐶1−𝜎
𝑡

1 − 𝜎
−

𝐿
1+𝜑
𝑡

1 + 𝜑

)
𝑍𝑡 ,

subject to the [nominal] period budget constraint given by

(1 − 𝜏𝑐𝑡 )𝑃𝑡𝐶𝑡 + 𝐵𝑡 = (1 − 𝜏𝑤𝑡 )𝑊𝑡𝐿𝑡 + 𝑅𝑡−1𝐵𝑡−1 + 𝑃𝑡𝑇𝑡 ,

where 𝐶𝑡 is consumption, 𝐿𝑡 is labour supply, 𝐵𝑡 denotes bonds, 𝑅𝑡 is nominal interest
rate, 𝑃𝑡 is the price level, 𝜏𝑐𝑡 is the consumption tax rate, 𝜏𝑤𝑡 is the wage tax rate, and 𝑇𝑡 are
lump-sum taxes.

The consumption bundle 𝐶𝑡 consists of a continuum of differentiated goods, and is
bundled by a CES aggregator of the form:

𝐶𝑡 =

[∫ 1

0
𝐶𝑡(𝑗)

𝜖−1
𝜖 𝑑𝑗

] 𝜖
𝜖−1

.

The utility maximisation problem of the household results in the following intertemporal
Euler equation:

𝛽E𝑡
𝑅𝑡

𝜋𝑡+1

(
𝐶𝑡+1
𝐶𝑡

)−𝜎
𝑍𝑡+1
𝑍𝑡

= E𝑡

1 − 𝜏𝑐
𝑡+1

1 − 𝜏𝑐𝑡
.

The labour supply condition gives the following intratemporal Euler equation:

1 − 𝜏𝑤𝑡
1 − 𝜏𝑐𝑡

𝑤𝑡𝐶
−𝜎
𝑡 = 𝐿

𝜑
𝑡 .

The intratemporal household problem of choosing a consumption bundle results in the
following demand for good 𝑗:

𝐶𝑡(𝑗) =
(
𝑃𝑡(𝑗)
𝑃𝑡

)−𝜖
𝐶𝑡 .

Production. Producers use labour as an input to produce differentiated consumption
goods according to the following production technology:

𝑌𝑡(𝑗) = 𝐴𝑡𝐿𝑡(𝑗).
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The price-setting problem of an individual firm 𝑗 follows Rotemberg (1982) where firm 𝑗

maximises the discounted value of profits,

max
{𝑃𝑡(𝑖)}

E𝑡

∞∑
𝑇=𝑡

𝑄𝑡 ,𝑇

[
(1 − 𝜏𝑠𝑡 )𝑃𝑡(𝑗)𝑌𝑡 ,𝑇(𝑗) − 𝑤𝑇𝐿𝑇(𝑗) −

Φ

2

(
𝑃𝑡 ,𝑇(𝑗)
𝑃𝑡−1,𝑇(𝑗)

− 1
)2

𝑌𝑡 ,𝑇

]
,

subject to:

𝑌𝑡 ,𝑇(𝑗) =
(
𝑃𝑡(𝑗)
𝑃𝑡

)−𝜖
𝑌𝑡 ,

whereΦ denotes a price adjustment cost parameter for the firms.25 𝑌𝑡 ,𝑇(𝑗) denotes demand
at time 𝑇 conditional on the price unchanged since period 𝑡. The firm maximises infinite
discounted stream of profits, with revenues given by the first term and costs given by the
second term. The revenues of the firm are taxed with tax level denoted by 𝜏𝑠𝑡 . Households
own firms, thus their revenues are discounted with the households’ discount factor, 𝑄𝑡 ,𝑇 :

𝑄𝑡 ,𝑇 = 𝛽
𝑃𝑡

𝑃𝑇

(
𝐶𝑇

𝐶𝑡

)−𝜎
𝑍𝑇

𝑍𝑡
.

The solution to the firm problem results in the following equation for inflation:26

𝜋𝑡(𝜋𝑡 − 1) = 1
𝜅

[
𝜖𝑚𝑐𝑡 + 1 − 𝜖 + 𝜏𝑠𝑡 𝜖 − 𝜏𝑠𝑡

]
+ E𝑡

[
𝑄𝑡 ,𝑡+1(𝜋𝑡+1 − 1)𝜋𝑡+1

𝑌𝑡+1
𝑌𝑡

]
.

Monetary authority. The monetary authority uses the [gross] nominal interest rate, 𝑅𝑡 ,
as its policy instrument and sets it according to a TR of the form:

𝑅𝑡

𝑅̄
= max

{
1,

(𝜋𝑡

𝜋∗

)𝜙𝜋
(
𝑌𝑡

𝑌𝑛
𝑡

)𝜙𝑦
}
,

where 𝜙𝜋 and 𝜙𝑦 is the degree of reaction to contemporaneous inflation and the output
deviations from natural level, respectively.

Fiscal authority. The real flow budget constraint for the government is

𝜏𝑐𝑡 𝐶𝑡 + 𝜏𝑠𝑡𝑌𝑡 + 𝜏𝑤𝑡 𝑤𝑡𝐿𝑡 + 𝑇𝑡 = 𝐺𝑡 . (61)

25. We calibrate Φ to the following:
Φ =

𝜖𝛾

(1 − 𝛾)(1 − 𝛽𝛾) ,

where 𝛾 is the probability of firm 𝑗 being unable to optimally adjust its price in any given period as in a
model with Calvo (1983) pricing.
26. Gross inflation is defined as 𝜋𝑡 = 𝑃𝑡/𝑃𝑡−1
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We make clear which taxes are enabled or disabled in each section of the paper, as we
explore different tax regimes. An additional equation – a rule fiscal policy rule – is needed
to close the model. In what follows we explore different specifications of such rules.

Market clearing. Markets clear, hence all output is consumed or used for government
expenditure,

𝑌𝑡 = 𝐶𝑡 + 𝐺𝑡 +
Φ

2 (𝜋𝑡 − 1)2𝑌𝑡 .

Note that as we assume Rotemberg adjustment costs, the natural level of output, 𝑌𝑛
𝑡 , co-

incides with headline output when Φ = 0.

B.1 Log Linearised Equilibrium Conditions
Log linearising the non-linear model equations about a non-inflation deterministic steady
state yields the following: Intertemporal Euler equation:27

𝑐𝑡 = E𝑡𝑐𝑡+1 −
1
𝜎

(
𝑖𝑡 + E𝑡

[
𝜀𝑡 +Ψ𝑐Δ𝜏̂𝑐𝑡+1 − 𝜋̂𝑡+1

] )
, (62)

where 𝜀𝑡 ≡ Δ𝑧̂𝑡+1 is preference shock.
Labour supply condition:28

𝑤̂𝑡 = 𝜎𝑐𝑡 + 𝜑𝑙𝑡 + 𝜏̂𝑤𝑡 Ψ
𝑤 −Ψ𝑐 𝜏̂𝑐𝑡 . (63)

Output:
𝑦̂𝑡 = 𝑎̂𝑡 + 𝑙𝑡 . (64)

Inflation:
𝜋̂𝑡 =

1
Φ
(𝜖𝑚𝑐𝑡 − 𝜏̂𝑠𝑡 ) + 𝛽E𝑡𝜋̂𝑡+1. (65)

Marginal cost:
𝑚𝑐𝑡 = 𝑤̂𝑡 − 𝑎̂𝑡 . (66)

Taylor rule:
𝑖𝑡 = max

{
−𝜇, 𝜙𝜋𝜋̂𝑡 + 𝜙𝑦 𝑦̂𝑡

}
. (67)

Government budget constraint

𝑔 𝑔̂𝑡 =
𝑇

𝑌
𝑡𝑡 + 𝜏𝑐𝑐(𝜏̂𝑐𝑡 + 𝑐𝑡) + 𝜏𝑠(𝜏̂𝑠𝑡 + 𝑦̂𝑡) + 𝜏𝑤

𝑤𝐿

𝑌
(𝜏̂𝑤𝑡 + 𝑤̂𝑡 + 𝑙𝑡).

Aggregate resource constraint:
𝑦̂𝑡 = 𝑐𝑐𝑡 + 𝑔 𝑔̂𝑡 . (68)

27. We defineΨ𝑐 = 𝜏̄𝑐

1−𝜏̄𝑐 and Δ𝜏̂𝑐
𝑡+1 = 𝜏̂𝑐

𝑡+1 − 𝜏̂𝑐𝑡 .
28. We defineΨ𝑤 = 𝜏̄𝑤

1−𝜏̄𝑤 .
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To get an expression for 𝑦̂𝑛𝑡 in terms of 𝑎̂𝑡 , start by noting that wages are equal to the
marginal product of labour:

𝑤̂𝑛
𝑡 = 𝑎̂𝑡 , (69)

and then combine with (63) to write:

𝑎̂𝑡 = 𝜎𝑐𝑛𝑡 + 𝜑𝑙𝑛𝑡 .

Note that we assume that in the natural allocation, taxes and government spending do not
fluctuate. Then use (68) to substitute in for 𝑐𝑛𝑡 , and use (64) to substitute in for 𝑙𝑛𝑡 :

𝑎̂𝑡 =
𝜎
𝑐
𝑦̂𝑛𝑡 + 𝜑(𝑦̂𝑛𝑡 − 𝑎̂𝑡).

Rearrange the above to write:
𝑦̂𝑛𝑡 = 𝜓𝑦𝑎 𝑎̂𝑡 , (70)

where 𝜓𝑦𝑎 =
1+𝜑
𝜑+ 𝜎

𝑐
.

Then, using (62) and (68), the DISE is given by

𝑦̂𝑡 = E𝑡 𝑦̂𝑡+1 −
𝑐

𝜎
(𝑖𝑡 − E𝑡𝜋̂𝑡+1 + 𝜀𝑡 + E𝑡Δ𝜏̂

𝑐
𝑡+1) − 𝑔E𝑡Δ𝑔̂𝑡+1.

We now turn to the NKPC. From (66), (63), and (68), marginal cost is given by

𝑚𝑐𝑡 =
𝜎
𝑐
(𝑦̂𝑡 − 𝑔 𝑔̂𝑡) + 𝜑 𝑦̂𝑡 + 𝜏̂𝑤𝑡 Ψ

𝑤 −Ψ𝑐 𝜏̂𝑐𝑡 − 𝑎̂𝑡(1 + 𝜑).

Plug this into the relationship for inflation implied by Rotemberg pricing (65)

𝜋̂𝑡 = 𝛽E𝑡𝜋̂𝑡+1 +
𝜖
Φ

[
𝜎
𝑐
(𝑦̂𝑡 − 𝑔 𝑔̂𝑡) + 𝜑 𝑦̂𝑡 +Ψ𝑤 𝜏̂𝑤𝑡 −Ψ𝑐 𝜏̂𝑐𝑡 −

1
𝜖
𝜏𝑠𝑡 − (1 + 𝜑)𝑎̂𝑡

]
,

to then yield the NKPC:

𝜋̂𝑡 = 𝛽E𝑡𝜋̂𝑡+1 + 𝜅𝑦 𝑦̂𝑡 +
𝜖
Φ

[
Ψ𝑤 𝜏̂𝑤𝑡 −Ψ𝑐 𝜏̂𝑐𝑡 −

1
𝜖
𝜏̂𝑠𝑡 −

𝜎
𝑐
𝑔̂𝑡 − (1 + 𝜑)𝑎̂𝑡

]
,

where 𝜅𝑦 = 𝜖
Φ
( 𝜎𝑐 + 𝜑).

NKPC can be rewritten in terms of output gap, 𝑥̂𝑡 = 𝑦̂𝑡 − 𝑦̂𝑛𝑡 as follows

𝜋̂𝑡 = 𝛽E𝑡𝜋̂𝑡+1 + 𝜅𝑦 𝑥̂𝑡 +
𝜖
Φ

(
Ψ𝑤 𝜏̂𝑤𝑡 −Ψ𝑐 𝜏̂𝑐𝑡 −

1
𝜖
𝜏̂𝑠𝑡 −

𝜎
𝑐
𝑔̂𝑡

)
.
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The government budget constraint in (B.1) can be cast as

𝑔

(
1 + 𝜏𝑐 + 𝜏𝑤

𝜎
1 − 𝑔

)
𝑔̂𝑡 = 𝜏𝜏̂𝑡 + 𝜏𝑐((1 − 𝑔)𝜏̂𝑐𝑡 + 𝑥̂𝑡 + 𝑦̂𝑛𝑡 )

+ 𝜏𝑠(𝜏̂𝑠𝑡 + 𝑥̂𝑡 + 𝑦̂𝑛𝑡 ) + 𝜏𝑤
(
𝜏̂𝑤𝑡 +

(
𝜎

1 − 𝑔
+ 𝜑 + 1

)
(𝑥̂𝑡 + 𝑦̂𝑛𝑡 ) − 𝑎̂𝑡(𝜑 + 1)

)
,

where 𝜏 = 𝑇/𝑌 is steady state ratio of lump-sum taxes to output.
The model is thus given by

𝑥̂𝑡 = E𝑡 𝑥̂𝑡+1 −
𝑐

𝜎
(𝑖𝑡 − E𝑡𝜋̂𝑡+1 − 𝑟𝑛𝑡 ) + 𝜀𝑡 , (71)

𝜋̂𝑡 = 𝛽E𝑡𝜋̂𝑡+1 + 𝜅𝑦 𝑥̂𝑡 +
𝜖
Φ

(
Ψ𝑤 𝜏̂𝑤𝑡 −Ψ𝑐 𝜏̂𝑐𝑡 −

1
𝜖
𝜏̂𝑠𝑡 −

𝜎
𝑐
𝑔̂𝑡

)
, (72)

𝑖𝑡 = max
{
−𝜇, 𝜙𝜋𝜋̂𝑡 + 𝜙𝑦 𝑥̂𝑡

}
, (73)

𝑔

(
1 + 𝜏𝑐 + 𝜏𝑤

𝜎
1 − 𝑔

)
𝑔̂𝑡 = 𝜏𝜏̂𝑡 + 𝜏𝑐((1 − 𝑔)𝜏̂𝑐𝑡 + 𝑥̂𝑡 + 𝑦̂𝑛𝑡 )

+ 𝜏𝑠(𝜏̂𝑠𝑡 + 𝑥̂𝑡 + 𝑦̂𝑛𝑡 ) + 𝜏𝑤
(
𝜏̂𝑤𝑡 +

(
𝜎

1 − 𝑔
+ 𝜑 + 1

)
(𝑥̂𝑡 + 𝑦̂𝑛𝑡 ) − 𝑎̂𝑡(𝜑 + 1)

) (74)

𝑟𝑛𝑡 =
𝜎𝜓𝑦𝑎

𝑐
E𝑡Δ𝑎̂𝑡+1 − E𝑡Δ𝜏̂

𝑐
𝑡+1 −

𝜎𝑔

𝑐
E𝑡Δ𝑔̂𝑡+1, (75)

which are equations (15) in the main text.
As mentioned, in order to close the model, tax rules and fiscal policy rules for 𝑔̂𝑡 are

required. In the text and subsequent Appendix chapters, we describe the set of rules and
assumptions we make to close the model.

B.2 Proof of Proposition 1
Use the NK-FP system in (15) with the following government spending rule:

E𝑡Δ𝑔̂𝑡+1 = 𝜓𝜋𝜋̂𝑡 + 𝜓𝑦 𝑥̂𝑡 .

The constraint on 𝑖𝑡 can be either binding (ZIR) or slack (PIR). Substitute and rearrange
the above system of equations to get the following:

𝑥̂𝑡 =

{
E𝑡 𝑥̂𝑡+1 − 𝑐

𝜎

(
𝜙𝜋𝜋̂𝑡 + 𝜙𝑦 𝑥̂𝑡 − E𝑡𝜋̂𝑡+1

)
− 𝑔𝜓𝜋𝜋𝑡 + 𝜀𝑡 ,

E𝑡 𝑥̂𝑡+1 − 𝑐
𝜎 (−𝜇 − E𝑡𝜋̂𝑡+1) − 𝑔𝜓𝜋𝜋𝑡 + 𝜀𝑡 ,

𝜋̂𝑡 = 𝛽E𝑡𝜋̂𝑡+1 + 𝜅𝑦 𝑥̂𝑡 .
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The vector of exogenous disturbances is denoted by𝑿𝑡 =
(
𝜀𝑡 0

)⊤ and is assumed to follow
a two-state first-order Markov process with transition kernel 𝑲 defined as

𝑲 =

(
𝑝 1 − 𝑝

1 − 𝑞 𝑞

)
,

where 𝑝, 𝑞 ∈ [0, 1] are transition probabilities. This allows towrite themodel in the canon-
ical form as in (2), and can be cast in the form 𝐹(Y) = 𝜆(X). FollowingGourieroux, Laffont,
and Monfort (1980), it is sufficient to check that the mapping 𝐹(X) is invertible for model
coherency. The mapping is as in (3) and (42). The relevant coefficient matrices are given
by

𝑨1 =

(
1 + 𝑐

𝜎𝜙𝑦 + 𝑔𝜓𝑦
𝑐
𝜎𝜙𝜋 + 𝑔𝜓𝜋

𝜅𝑦 −1

)
, 𝑨0 =

(
1 + 𝑔𝜓𝑦 𝑔𝜓𝜋

𝜅𝑦 −1

)
,

𝑩0 = 𝑩1 =

(
−1 − 𝑐

𝜎
0 𝛽

)
.

A𝐽1 ,A𝐽2 ,A𝐽3 , andA𝐽4 are then given by:

A𝐽1 = A𝐽3 =

(
1 + 𝑐

𝜎𝜙𝑦 + 𝑔𝜓𝑦 − 𝑝 − 𝑐
𝜎 (1 − 𝑞) 𝑐

𝜎𝜙𝜋 + 𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐
𝜎 (1 − 𝑝)

𝜅𝑦 + 𝛽(1 − 𝑞) 𝛽𝑞 − 1

)
,

A𝐽2 = A𝐽4 =

(
𝑔𝜓𝑦 + 1 − 𝑝 − 𝑐

𝜎 (1 − 𝑞) 𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐
𝜎 (1 − 𝑝)

𝜅𝑦 + 𝛽(1 − 𝑞) 𝛽𝑞 − 1

)
.

Belowwe show that when𝜓𝜋 → ∞, sign(A𝐽1) = sign(A𝐽2) = sign(A𝐽3) = sign(A𝐽4) and the
model thus satisfies the CC conditions. We start with A𝐽1 , determinant of which is given
by

|A𝐽1 | = |A𝐽3 | = (𝛽𝑞 − 1)
[
1 + 𝑐

𝜎
𝜙𝑦 + 𝑔𝜓𝑦 − 𝑝 − 𝑐

𝜎
(1 − 𝑞)

]
− (𝜅𝑦 + 𝛽(1 − 𝑞))

[ 𝑐
𝜎
𝜙𝜋 + 𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐

𝜎
(1 − 𝑝)

]
If 𝜓𝜋 tends to infinity and 𝜓𝑦 is bounded, the second term on the RHS is positive and,
thus, |A𝐽1 | < 0. We have that

lim
𝜓𝜋→∞

|A𝐽1 | = lim
𝜓𝜋→∞

|A𝐽3 | = −∞ (76)

We proceed with |A𝐽2 | = |A𝐽4 |, which is nothing but

|A𝐽2 | = |A𝐽4 | =
[
𝑔𝜓𝑦 + 1 − 𝑝 − 𝑐

𝜎
(1 − 𝑞)

]
(𝛽𝑞 − 1)

− (𝜅𝑦 + 𝛽(1 − 𝑞))
[
𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐

𝜎
(1 − 𝑝)

] (77)
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As previously, the second term on the RHS is positive if 𝜓𝜋 tends to infinity and 𝜓𝑦 is
bounded. Hence, we have that

lim
𝜓𝜋→∞

|A𝐽2 | = lim
𝜓𝜋→∞

|A𝐽4 | = −∞ (78)

Thus, we have that if 𝜓𝜋 → ∞, the determinants of A𝐽𝑗 , 𝑗 ∈ {1, 2, 3, 4}, are negative. If
𝜓𝜋 → −∞, the same logic applies. In this case, the determinants ofA𝐽𝑗 , 𝑗 ∈ {1, 2, 3, 4}, are
positive. This completes the proof. ■

Lower bound for 𝝍𝝅. We now find the lower bound for 𝜓𝜋 that guarantees the satisfac-
tion of the CC conditions. For ease of exposition, we assume that 𝜓𝑦 = 0. The model is
coherent and complete, when |A𝐽𝑘 | < 0. Hence 𝜓𝜋 must satisfy:{[

1 + 𝑐
𝜎𝜙𝑦 − 𝑝 − 𝑐

𝜎 (1 − 𝑞)
]
(𝛽𝑞 − 1) − (𝜅𝑦 + 𝛽(1 − 𝑞))

[
𝑐
𝜎𝜙𝜋 + 𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐

𝜎 (1 − 𝑝)
]
< 0,[

1 − 𝑝 − 𝑐
𝜎 (1 − 𝑞)

]
(𝛽𝑞 − 1) − (𝜅𝑦 + 𝛽(1 − 𝑞))

[
𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐

𝜎 (1 − 𝑝)
]
< 0.

Rearrange to get{[
1 + 𝑐

𝜎𝜙𝑦 − 𝑝 − 𝑐
𝜎 (1 − 𝑞)

]
(𝛽𝑞 − 1) < (𝜅𝑦 + 𝛽(1 − 𝑞))

[
𝑐
𝜎𝜙𝜋 + 𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐

𝜎 (1 − 𝑝)
]
,[

1 − 𝑝 − 𝑐
𝜎 (1 − 𝑞)

]
(𝛽𝑞 − 1) < (𝜅𝑦 + 𝛽(1 − 𝑞))

[
𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐

𝜎 (1 − 𝑝)
]
.

Rearrange to get the system that 𝜓𝜋 must satisfy. Note that depending on the values of
monetary policy feedback parameters, 𝜙𝜋 and 𝜙𝑦 , one of the conditions is redundant

[1+ 𝑐
𝜎𝜙𝑦−𝑝− 𝑐

𝜎 (1−𝑞)](𝛽𝑞−1)
(𝜅𝑦+𝛽(1−𝑞)) < 𝑐

𝜎𝜙𝜋 + 𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐
𝜎 (1 − 𝑝),

[1−𝑝− 𝑐
𝜎 (1−𝑞)](𝛽𝑞−1)

(𝜅𝑦+𝛽(1−𝑞)) < 𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐
𝜎 (1 − 𝑝).

If the monetary authority follows strict inflation targeting (𝜙𝑦 = 0), given the second
inequality, the first one is redundant with respect to 𝜓𝜋. Thus inspecting the second in-
equality we have:{ [

1 − 𝑝 − 𝑐
𝜎 (1 − 𝑞)

]
(𝛽𝑞 − 1)

(𝜅𝑦 + 𝛽(1 − 𝑞)) + 1 − 𝑝 + 𝑐

𝜎
(1 − 𝑝)

}
1
𝑔
= 𝜓𝜋 < 𝜓𝜋 ,

where 𝜓𝜋 denotes the lower bound for 𝜓𝜋.

B.3 The Unconventional Fiscal Policy Case
The first fiscal rule we inspect is what we term the “unconventional fiscal policy” (UFP)
rule that replicates monetary policy at the ELB and mirrors the approach in Correia et

54



al. (2013) and Seidl and Seyrich (2023). Assume that the government expenditure growth
rate, E𝑡Δ𝑔̂𝑡+1, responds to contemporaneous inflation and the output gapwhen the interest
rate is at the ELB:

E𝑡Δ𝑔̂𝑡+1 = 1{𝑖𝑡 = −𝜇}(𝜓𝑢
𝜋𝜋̂𝑡 + 𝜓𝑢

𝑦 𝑥̂𝑡), (79)

where 𝜓𝑢
𝜋 and 𝜓𝑢

𝑦 denote the coefficients of reaction to inflation and the output gap, re-
spectively.

The presence of the FP instrument in the DISE allows the piecewise linear system to
satisfy the CC conditions, despite the presence of the ELB constraint on 𝑖𝑡 and an active
TR. The instrument E𝑡Δ𝑔̂𝑡+1 has the same effect in the NK model as the monetary policy
instrument and, hence, it governs the linearity of the DISE (15a). The CC conditions are
satisfied so long as:

𝜓𝑢
𝜋 =

𝑐

𝑔𝜎
𝜙𝜋 , 𝜓𝑢

𝑦 =
𝑐

𝑔𝜎
𝜙𝑦 , (80)

which also allows (15c) to follow an active TR (𝜙𝜋 > 1). It is straightforward to see that
since the model is now linear, it is generally coherent and complete. The UFP rule embeds
the mechanism of the simple model in Correia et al. (2013), which showed that a set of
tax instruments can replicate monetary policy when the interest rate subject to the ELB
constraint. This rule also applies to models where monetary policy is strictly inflation
targeting, whereby if 𝜙𝑦 = 0 then 𝜓𝑦 = 0. Thus, we have the following proposition:

Proposition 2. A baseline New Keynesian model with fiscal policy that consists of government
spending, lump-sum, and output taxes as defined in (15), is generally coherent and complete when
the sensitivity parameters of the fiscal instrument, 𝜓𝑢

𝜋 and 𝜓𝑢
𝑦 , allow fiscal policy to replicate mon-

etary policy at the ELB as described in the “unconventional fiscal rule in Equation (79).

Coherency and completeness in this case is illustrated in Figure 9 for the special case
where 𝜙𝑦 = 𝜓𝑢

𝑦 = 0 . We plot 𝐴𝐷 and 𝐴𝑆 for both the absorbing (steady state) case where
𝜀𝑡 = 0 (Subfigure 9a) and the transitory state with a PIR absorbing state (Subfigure 9b).

In the absence of active FP, the 𝐴𝐷 curve is illustrated, as before, with a piecewise
red line, which may not intersect 𝐴𝑆 as shown with 𝐴𝐷𝐸𝐿𝐵,𝑇𝑅 in Subfigure 9a and 𝐴𝐷1
in Subfigure 9b. Once FP is activate at the ELB, as in the UFP fiscal rule (79), it fully
mimics monetary policy as if the latter were unconstrained. Thus, 𝐴𝐷 is a linear relation
composed of the red 𝐴𝐷𝑇𝑅 line and the purple 𝐴𝐷𝑢 line. In other words, in the presence
of active FP stemming from the UFP rule, the model always has a unique solution.

B.4 Optimal Monetary Policy with Discretion
Wenowconsider the casewhere themonetary authority operates optimalmonetary policy
under discretion (OP), as in Nakata (2018) and Nakata and Schmidt (2019). The optimal
policy condition, when 𝑖𝑡 is unconstrained, is:

𝛼𝑦 𝑦̂𝑡 + 𝜅𝑦𝜋̂𝑡 = 0, (81)
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Figure 9: Coherency and Completeness with Unconventional Fiscal Policy Rule

(a) Absorbing State (b) Transitory State with PIR Absorbing

Note: Left panel illustrates the steady-state equilibrium. Right panel illustrates the transitory state equilib-
rium with a PIR absorbing state.

where 𝛼𝑦 is the relative weight that the policy maker attaches to the output gap in its loss
function. When the ELB is non-binding, the model is given by condition (81), together
with the NKPC given by

𝜋̂𝑡 = 𝛽𝜋̂𝑡+1 + 𝜅𝑦 𝑥̂𝑡 , (82)

and the fiscal rule is as before given by Equation (16):

E𝑡Δ𝑔̂𝑡+1 = 𝜓𝜋𝜋̂𝑡 + 𝜓𝑦 𝑦̂𝑡 .

When the ELB is binding the model is given by the following set of equations:

𝑦̂𝑡 = E𝑡 𝑦̂𝑡+1 −
𝑐

𝜎
(−𝜇 − E𝑡𝜋̂𝑡+1) − 𝑔E𝑡Δ𝑔̂𝑡+1 + 𝜀𝑡 , (83)

𝜋̂𝑡 = 𝛽E𝑡𝜋̂𝑡+1 + 𝜅𝑦 𝑥̂𝑡 . (84)

We thus have the following proposition

Proposition 3. A baseline New Keynesian model with fiscal policy that consists of government
spending, lump-sum taxes, and output taxes as defined in (81)-(84) is generally coherent and
complete when the reaction of fiscal policy to deviations of inflation is sufficiently strong.

56



Proof of proposition. The model can be cast in the canonical form with the relevant
matrices given by

𝑨1 =

(
𝛼𝑦 𝜅𝑦

𝜅𝑦 −1

)
, 𝑨0 =

(
1 𝑔𝜓𝜋

𝜅𝑦 −1

)
,

𝑩1 =

(
0 0
0 𝛽

)
, 𝑩0 =

(
−1 − 𝑐

𝜎
0 𝛽

)
.

A𝐽1 ,A𝐽2 ,A𝐽3 ,A𝐽4 are given by

A𝐽1 = A𝐽3 =

(
𝛼𝑦 𝜅𝑦

𝜅𝑦 + 𝛽(1 − 𝑞) 𝛽𝑞 − 1

)
,

A𝐽2 = A𝐽4 =

(
1 − 𝑝 − 𝑐

𝜎 (1 − 𝑞) 𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐
𝜎 𝑞

𝜅𝑦 + 𝛽(1 − 𝑞) 𝛽𝑞 − 1

)
.

We start with |A𝐽1 | = |A𝐽3 |:

|A𝐽1 | = |A𝐽3 | = 𝛼𝑦(𝛽𝑞 − 1) − 𝜅𝑦(𝜅𝑦 + 𝛽(1 − 𝑞)) < 0.

Since |A𝐽1 | = |A𝐽3 | < 0, we require that 𝜓𝜋 is such that |A𝐽2 | = |A𝐽4 | < 0

|A𝐽2 | = |A𝐽4 | = (1 − 𝑝 − 𝑐

𝜎
(1 − 𝑞))(𝛽𝑞 − 1)

− (𝜅𝑦 + 𝛽(1 − 𝑞))(𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐

𝜎
𝑞)

If 𝜓𝜋 → ∞, the determinants are negative. This completes the proof. ■

Lower bound for 𝝍𝝅. 𝜓𝜋 must satisfy that |A𝐽2 | = |A𝐽4 | < 0

(1 − 𝑝 − 𝑐

𝜎
(1 − 𝑞))(𝛽𝑞 − 1) < (𝜅𝑦 + 𝛽(1 − 𝑞))(𝑔𝜓𝜋 − 1 + 𝑝 − 𝑐

𝜎
𝑞)

which yields the lower bound for 𝜓𝜋{ (1 − 𝑝 − 𝑐
𝜎 (1 − 𝑞))(𝛽𝑞 − 1)

(𝜅𝑦 + 𝛽(1 − 𝑞)) + 1 − 𝑝 + 𝑐

𝜎
𝑞

}
𝑔−1 = 𝜓𝜋 < 𝜓𝜋

We plot the region for where the model satisfies the CC conditions as a function of 𝜓𝜋

and 𝜓𝑦 in Figure 10.
To illustrate the intuition of our findings, consider the absorbing state of the model

57



Figure 10: Coherency and Completeness Region for Optimal Monetary Policy and Infla-
tion and Output Gap Fiscal Rule
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Blue denotes regions where coherency and completeness conditions are satisfied. Red denotes regions
where the model is incoherent or incomplete.

with 𝜀𝑡 = 0.

𝜋̂ =
𝜅𝑦

1 − 𝛽
𝑦̂ 𝐴𝑆, (85a)

𝜋̂ =

{
−𝛼𝑦

𝜅𝑦
𝑦̂ 𝐴𝐷𝑂𝑃 for 𝜋̂ ≥ −𝜇,

𝜓∗ 𝜅𝑦

1−𝛽 𝑦̂ − 𝜇 𝐴𝐷𝐸𝐿𝐵 for 𝜋̂ ≤ −𝜇.
(85b)

We plot this system of equations for the case of passive and active FP in Figure 11.
We underline the following when observing Equation (85). First, note that 𝐴𝐷𝐸𝐿𝐵 in

this regime is identical to 𝐴𝐷𝐸𝐿𝐵 in Equation (20). This makes intuitive sense as when
facing the ELB constraint, the monetary authority is no longer able to conduct optimal
monetary policy. Secondly, as seen in Figure 11, 𝐴𝐷𝑂𝑃 has a negative slope which implies
that there always exists a PIR equilibrium. The ZIR equilibrium can only exist below the
𝐴𝐷𝑂𝑃 line when FP is passive (𝜓∗ < 1). Additionally, in the case where 𝜓∗ < 1, 𝐴𝐷𝐸𝐿𝐵

is bound from above by the ELB on the interest rate, −𝜇, whereby 𝜓∗ = 0. Hence, we can
rule out multiple PIR equilibria, and the system in Equation (85) nests the NK-OP system
as described in Ascari and Mavroeidis (2022).

Next, consider the transitory state with 𝜀𝑡 =
𝑝

𝜎 𝑟
𝑇 < 0. Here the economy starts off
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Figure 11: Absorbing State with Optimal Discretionary Monetary Policy (𝜀𝑡 = 0)

Plot on the left depicts the positive interest rate absorbing state with an active fiscal policy regime. Plot on
the right shows the equilibria for a passive fiscal policy regime.

in a transitory state for an indefinite period of time before jumping to an absorbing state.
Belowwe describe theMSV for both PIR and ZIR absorbing states, whichwe plot in Figure
12.

OP transitory statewith PIR absorbing. This implies that the system takes the following
form:

𝜋̂𝑇 =
𝜅𝑦

1 − 𝛽𝑝
𝑦̂𝑇 𝐴𝑆, (86a)

𝜋̂𝑇 =

{
−𝛼𝑦

𝜅𝑦
𝑦̂𝑇 𝐴𝐷𝑂𝑃 ,

𝜎(1−𝑝)
𝑐(𝑝−𝜓∗) 𝑦̂

𝑇 − 𝜇
𝑝−𝜓∗ − 𝑝

𝑐(𝑝−𝜓∗) 𝑟
𝑇 𝐴𝐷𝐸𝐿𝐵.

(86b)

With active FP, 𝐴𝐷𝑂𝑃 and 𝐴𝐷𝐸𝐿𝐵 are both downward sloping. Analogously, as in the
absorbing state where 𝜀𝑡 = 0, 𝐴𝐷𝐸𝐿𝐵 in Equations (21) and (86) are identical. Thus,
the model is coherent and complete. However, this is not true for passive FP, whereby the
acutely kinked𝐴𝐷-curve implies the presence of a ZIR absorbing state. Thus, we conclude
that when 𝜓∗ < 1, the NK-OP model fails to satisfy the CC conditions.
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Figure 12: Transitory States with Optimal Discretionary Monetary Policy under Active or
Passive Fiscal Policy

Top row plots are with a positive interest rate absorbing state. Bottom row plots are with a zero interest rate
absorbing state. Top left plot is with an active fiscal policy regime (𝜓∗ > 1). Top right and bottom plots are
with passive fiscal policy regimes (𝜓∗ < 1).
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OP transitory state with ZIR absorbing. A ZIR absorbing state is unfeasible with an
active FP regime (𝜓∗ > 1), as shown in Equation (85) and Figure 11. Thus, for 𝜓∗ > 1,
a system in a transitory state will eventually move to a PIR absorbing state as described
above.

As mentioned, when 𝜓∗ < 1 the model does not satisfy CC conditions and there exists
a ZIR absorbing state, as the the slope of 𝐴𝐷𝐸𝐿𝐵 can be upward sloping and flatter than
that of 𝐴𝑆. In such a case, the system takes the following form:

𝜋̂𝑇 =
𝜅𝑦

1 − 𝛽𝑝
𝑦̂𝑇 + 𝛽

(1 − 𝑝)𝜇
𝜓∗ − 1

𝐴𝑆, (87a)

𝜋̂𝑇 =


−𝛼𝑦

𝜅𝑦
𝑦̂𝑇 𝐴𝐷𝑂𝑃 ,

(1−𝑝)𝜎
𝑐(𝑝−𝜓∗) 𝑦̂

𝑇 − (1−𝑝)𝜇
(𝑝−𝜓∗)(𝜓∗−1)

[
(1−𝛽)𝜎
𝑐𝜅𝑦

+ 1
]
− 𝜇

𝑝−𝜓∗ − 𝑝

𝑐(𝑝−𝜓∗) 𝑟
𝑇 𝐴𝐷𝐸𝐿𝐵.

(87b)

Here too 𝐴𝐷𝐸𝐿𝐵 in Equations (23) and (87) are identical, following the previously ex-
plained logic.

B.5 Canonical Form Coefficients under Consumption Tax Rules
A contemporaneous inflation targeting rule implies:

E𝑡Δ𝜏̂
𝑐
𝑡+1 = 𝜓𝜋𝜋̂𝑡 . (88)

The relevant coefficient matrices are given by:

𝑨1 =

(
1 + 𝜙𝑦𝜎−1 (𝜙𝜋 + 𝜓𝜋)𝜎−1

𝜅𝑦 −1

)
, 𝑨0 =

(
1 𝜓𝜋𝜎−1

𝜅𝑦 −1

)
,

and
𝑩0 = 𝑩1 =

(
−1 −𝜎−1
0 𝛽

)
.

A contemporaneous inflation and output targeting rule implies:

E𝑡Δ𝜏̂
𝑐
𝑡+1 = 𝜓𝜋𝜋̂𝑡 + 𝜓𝑦 𝑦̂𝑡 (89)

The relevant coefficient matrices are given by:

𝑨1 =

(
1 + (𝜙𝑦 + 𝜓𝑦)𝜎−1 𝜎−1(𝜙𝜋 + 𝜓𝜋)

𝜅𝑦 −1

)
, 𝑨0 =

(
1 + 𝜓𝑦𝜎−1 𝜎−1𝜓𝜋

𝜅𝑦 −1

)
,

and
𝑩1 =

(
−1 −𝜎−1
0 𝛽

)
, 𝑩0 = 𝑩1.
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B.6 Contemporaneous Rules
Now, we assume that the rule in Equation (16) is replaced with a contemporaneous or
non-inertial fiscal feedback rule of the form

𝑔̂𝑡 = 𝜓𝜋𝜋̂𝑡 + 𝜓𝑦 𝑥̂𝑡 . (90)

We also assume that only lump-sum taxes are levied, so there is a one-to-one mapping of
lump-sum taxes to government spending. We then have the following proposition:

Proposition 4. A baseline New Keynesian model with a simple fiscal rule described by (90) and
(15), in which monetary policy adheres to strict inflation targeting (𝜙𝑦 = 0) and the Taylor prin-
ciple is satisfied (𝜙𝜋 > 1), fails to satisfy the coherency and completeness conditions.

The relevant coefficient matrices for the proof of proposition 4 are:

𝑨1 =

(
−𝑐𝜎−1𝜙𝜋 + 𝑔𝜓𝜋 −1 + 𝑔𝜓𝑦 − 𝑐𝜎−1𝜙𝑦

−1 − 𝜅𝑔𝜓𝜋 𝜅𝑦 − 𝜅𝑔𝜓𝑦

)
,

𝑨0 =

(
𝑔𝜓𝜋 −1 + 𝑔𝜓𝑦

−1 − 𝜅𝑔𝜓𝜋 𝜅𝑦 − 𝜅𝑔𝜓𝑦

)
,

and
𝑩0 = 𝑩1 =

(
𝑐𝜎−1 − 𝑔𝜓𝜋 1 − 𝑔𝜓𝑦

𝛽 0

)
.

Rearranging the system of equations and obtaining the relevant matrices from the
canonical form with relevant coefficients provided in Appendix B.6, CC conditions are
satisfied if and only if the signs of |A𝐽1 | and |A𝐽4 | are identical. This is not the case since

|A𝐽1 | = |𝑨1 + 𝑩1𝑰2 |

=

���� 𝑐
𝜎 (1 − 𝜙𝜋) 0

𝛽 − 1 − 𝜅𝑔𝜓𝜋 𝜅𝑦 − 𝜅𝑔𝜓𝑦

����
=

𝑐(1 − 𝜙𝜋)(𝜅𝑦 − 𝜅𝑔𝜓𝑦)
𝜎

,

|A𝐽4 | =
𝑐(𝜅𝑦 − 𝜅𝑔𝜓𝑦)

𝜎
.

(91)

To put simply, the above gives |A𝐽1 | = |A𝐽4 |(1−𝜙𝜋), which implies that under an active TR
the NK model with FP rule (90) does not generally satisfy the CC conditions.

As in the baseline NKmodel without FP, this can be seen graphically in the case of the
absorbing state (𝜀𝑡 = 0) or the transitory state with a PIR absorbing state. We illustrate
the case of the absorbing state with 𝜓𝑦 = 0 by rearranging the system of equations into
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Figure 13: Strict Inflation Targeting Monetary Policy: Absorbing State

The absorbing state is described as the permanent state of the economy when 𝜀𝑡 = 0. Monetary policy is
conducted by adjusting the nominal interest rate to only close the inflation gap, implying that 𝜙𝑦 = 0.

𝐴𝑆 and 𝐴𝐷 schedules:

𝜋̂ =
𝜅𝑦

1 − 𝛽 + 𝜅𝑔𝜓𝜋
𝑥̂ 𝐴𝑆, (92a)

𝜋̂ =

{
𝜙𝜋𝜅𝑦

1−𝛽+𝜅𝑔𝜓𝜋
𝑥̂ 𝐴𝐷𝑇𝑅 ,

−𝜇 𝐴𝐷𝐸𝐿𝐵.
(92b)

Notice that with the introduction of FP, both the 𝐴𝑆 and 𝐴𝐷𝑇𝑅 are augmented and
sensitive to two FP parameters: the NKPC coefficient of government expenditure, 𝜅𝑔 , and
the FP rule reaction parameter to inflation, 𝜓𝜋. Furthermore, notice that the slopes of
𝐴𝑆 and 𝐴𝐷𝑇𝑅 are dependent on the relative sizes of these parameters. Namely, if 𝜓𝜋 >
(1 − 𝛽)/𝜅𝑔 , then 𝐴𝑆 and 𝐴𝐷 are diagrammatically similar to the case of the baseline NK
model with no FP (Figure 1), with two solutions – one PIR and one ZIR. This is illustrated
in the left diagram of Figure 13. However, if the condition 𝜓𝜋 < (1 − 𝛽)/𝜅𝑔 holds, then
both 𝐴𝑆 and 𝐴𝐷𝑇𝑅 become downward sloping, and if 𝐴𝐷𝑇𝑅 is steeper than 𝐴𝑆 then only
one unique solution remains – the PIR equilibrium. This case is illustrated in the right
diagram of Figure 13.

But is the condition 𝜓𝜋 < (1 − 𝛽)/𝜅𝑔 enough to ensure a unique solution once the
economy is subject to shocks? No. To see this diagrammatically we consider the economy
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Figure 14: Strict Inflation TargetingMonetary Policy: Transitory State with PIR Absorbing

In each period the economy is subject to a shock with probability 𝑝. With complementary probability 1− 𝑝,
the economy transitions to the PIR absorbing state. Monetary policy is conducted by adjusting the nominal
interest rate to only close the inflation gap, implying that 𝜙𝑦 = 0.

when it starts in the transitory state and is subject to shocks with probability 𝑝 in each
period, and with probability 1 − 𝑝 the economy transitions to its PIR absorbing state. 𝐴𝑆
and 𝐴𝐷 can then be written as follows:

𝜋̂𝑇 =
𝜅𝑦

1 − 𝑝𝛽 + 𝜅𝑔𝜓𝜋
𝑥̂𝑇 𝐴𝑆, (93a)

𝜋̂𝑇 =

{ 𝜎(1−𝑝)
𝑝𝑐+(1−𝑝)𝜎𝑔𝜓𝜋−𝑐𝜙𝜋

𝑥̂𝑇 − 𝑝

𝑐𝑝+(1−𝑝)𝑔𝜎𝜓𝜋−𝑐𝜙𝜋
𝑟𝑇 𝐴𝐷𝑇𝑅 ,

𝜎(1−𝑝)
𝑝𝑐+(1−𝑝)𝜎𝑔𝜓𝜋

𝑥̂𝑇 − 𝑐
𝑝𝑐+𝑔𝜎𝜓𝜋(1−𝑝)𝜇 − 𝑝

𝑐𝑝+(1−𝑝)𝑔𝜎𝜓𝜋
𝑟𝑇 𝐴𝐷𝐸𝐿𝐵.

(93b)

Figure 14 plots 𝐴𝑆 and 𝐴𝐷 from (93), where we can clearly see that regardless of the
relative size of 𝜅𝑔 and 𝜓𝜋, the CC conditions are not satisfied and thus, in general, no
solution exists or that two solutions exist. This result holds true even when the condition
𝜓𝜋 < (1 − 𝛽)/𝜅𝑔 holds, which is the condition needed to ensure a unique absorbing state.

Monetary policy targets inflation and output gap. Consider the case where the mone-
tary authority targets both the inflation and output gap, (𝜙𝑦 > 0).

As before, rearrange the model for the absorbing state where 𝜀𝑡 = 0, and express the
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Figure 15: Contemporaneous Fiscal Policy and Taylor rule with Inflation and the Outgap
Gap

(a) PIR Absorbing State (b) Transitory State with PIR Absorbing State

model in two equations, 𝐴𝑆 and 𝐴𝐷:

𝜋̂ = Θ𝑥̂ 𝐴𝑆, (94a)

𝜋̂ =

{(
𝜙𝜋Θ + 𝜙𝑦

)
𝑥̂ 𝐴𝐷𝑇𝑅 ,

−𝜇 𝐴𝐷𝐸𝐿𝐵 ,
(94b)

where
Θ =

𝜅𝑦 − 𝜅𝑔𝜓𝑦

1 − 𝛽 + 𝜅𝑔𝜓𝜋
.

Note carefully that the slopes of 𝐴𝑆 and 𝐴𝐷 in (94) are potentially ambiguous. In line
with the calibration in Table 1 and with 𝜓𝑦 ,𝜓𝜋 being sufficiently large in absolute value,
the following assumptions on parameter values are made:

Θ < 0, 𝜙𝜋Θ + 𝜙𝑦 > Θ,

which then implies
Θ(1 − 𝜙𝜋) < 𝜙𝑦 .

One can see that the LHS of the above inequality is always positive, and that 𝜙𝑦 must
be sufficiently large for the inequality to hold. This inequality highlights the role of a TR
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that includes both inflation and the output gap. Ifmonetary policy follows a strict inflation
targeting regime, the inequality would never be satisfied and, hence, no matter the fiscal
policy stance (captured by Θ), the existence of multiple absorbing states is never ruled
out. Hence, multiplicity of steady states in this case is only ruled out under a particular
configuration of fiscal-monetary mix. In other words, should the slope of 𝐴𝑆 be positive
then under conventional restrictions on TR parameters, the slope of 𝐴𝐷𝑇𝑅 would also be
positive and greater than that of 𝐴𝑆, creating the two – PIR and ZIR – absorbing states.
With these assumptions, 𝐴𝑆 and 𝐴𝐷 in (94) is plotted in Figure 15a, and we have the
following proposition:

Proposition 5. A baseline New Keynesian model with a simple fiscal rule described by (90) and
(15), is coherent and complete if fiscal policy responds aggressively enough to inflation and the
output gap and monetary policy responds to both inflation and the output gap.

Next we show analytical results for when the economy is in the transitory state. As
mentioned above, as the ZIR absorbing state is eliminated, we restrict attention to the ex-
istence of a unique PIR absorbing state. Assume that initially the economy is in a transitory
state with 𝜀𝑡 ≠ 0 and it will remain in this transitory state with probability 𝑝. The system
can then be written as follows

𝜋̂𝑇 =
𝜅𝑦 − 𝜅𝑔𝜓𝑦

1 − 𝑝𝛽 + 𝜅𝑔𝜓𝜋
𝑥̂𝑇 𝐴𝑆, (95a)

𝜋̂𝑇 =


𝜎(1−𝑝)(1−𝑔𝜓𝑦)+𝑐𝜙𝑦

𝑝𝑐+(1−𝑝)𝜎𝑔𝜓𝜋−𝑐𝜙𝜋
𝑥̂𝑇 − 𝑝

𝑐𝑝+(1−𝑝)𝑔𝜎𝜓𝜋−𝑐𝜙𝜋
𝑟𝑇 𝐴𝐷𝑇𝑅 ,

𝜎(1−𝑝)(1−𝑔𝜓𝑦)
𝑝𝑐+(1−𝑝)𝜎𝑔𝜓𝜋

𝑥̂𝑇 − 𝑐
𝑝𝑐+𝑔𝜎𝜓𝜋(1−𝑝)𝜇 − 𝑝

𝑐𝑝+(1−𝑝)𝑔𝜎𝜓𝜋
𝑟𝑇 𝐴𝐷𝐸𝐿𝐵.

(95b)

With 𝜓𝜋 sufficiently large and 𝜓𝑦 positive but not too large, 𝐴𝑆 is downward sloping and
𝐴𝐷𝑇𝑅 is upward sloping. Since 𝐴𝐷𝐸𝐿𝐵 is also upward-sloping (𝑝 < 1) or flat (𝑝 = 1),
there is a unique solution for any realisation of 𝑟𝑇 . The system (95) is illustrated in Figure
15b.

Much like the case for the absorbing state, the downward sloping 𝐴𝑆 curve is central
to the uniqueness result. This is predicated on: (i) direct influence of fiscal policy on
aggregate supply, (ii) fiscal policy being procyclical, and (iii) the TR also being a function
of the output gap. Absent of either of the aforementioned points, themodel would imply a
non-unique solution and, thus, the policy stance presented abovemerely presents a special
case that is not applicable to a more general class of models. First, absent of direct fiscal
policy effects, the 𝐴𝑆 curve is always upward sloping as in a baseline NK model. This is
true, for example, if there is no income effect on the household’s labour supply decision
due to preferences such as in Greenwood, Hercowitz, and Huffman (1988) (GHH), or if
labour is supplied inelastically. In such a case, fiscal policy would not directly affect 𝐴𝑆
and thus its slope would remain positive. Second, even if fiscal policy had direct effects
on 𝐴𝑆, it needs to react positively to deviations of inflation and output. If this were not to
hold, 𝐴𝑆 would be upward sloping, which would generate multiple solutions.
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However, the result is robust to the calibration of the government expenditure share in
output, 𝑔. To illustrate this, consider upper and lower bounds on 𝜓𝑦 . The upper bound
on 𝜓𝑦 can be inferred from the restriction on 𝐴𝐷𝐸𝐿𝐵 being upward sloping or flat, which
is the case if and only if

1 − 𝑔𝜓𝑦 ≥ 0 =⇒ 𝜓𝑦 ≤ 1
𝑔
.

The lower bound on 𝜓𝑦 can be inferred from the restriction on the slope of 𝐴𝑆whichmust
be negative. This implies that

𝜅𝑦 − 𝜅𝑔𝜓𝑦 < 0 =⇒ 𝜓𝑦 >
𝜅𝑦

𝜅𝑔
.

These conditions imply that the model is coherent and complete only if

𝜅𝑦

𝜅𝑔
>

1
𝑔

=⇒ −𝜚 𝑔2 + (𝜚 + 1)𝑔 − 1 > 0,

where 𝜚 = 𝜑/𝜎. Thence, the relationship holds for 𝑔 < min(1, 1/𝜚), which is always the
case if the coefficient of relative risk aversion is greater than inverse-Frisch elasticity of
labour supply, 𝜎 > 𝜑.

Finally, to visually see the need for procyclical fiscal policy – and the upper and lower
limits on 𝜓𝑦 – we numerically compute regions for which CC conditions are satisfied in
{𝜓𝜋 ,𝜓𝑦} space in Figure 16.
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Figure 16: Coherency and Completeness Region for Inflation and Output Gap Targeting
Monetary Policy
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Blue circles denote regions where coherency and completeness conditions are satisfied. Red triangles de-
notes region where the model is either incoherent or incomplete.
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B.7 NK-FP Model with Government Spending Inertia
The canonical form coefficients are given by

𝑨1 =
©­­­«
𝜅𝑦 −1 0 𝜅𝑔

−1 0 − 𝑐
𝜎 𝑔

𝜙𝑦 𝜙𝜋 −1 0
𝜓𝑦 𝜓𝜋 0 −1

ª®®®¬ , 𝑨0 =
©­­­«
𝜅𝑦 −1 0 𝜅𝑔

−1 0 0 𝑔

𝜙𝑦 𝜙𝜋 −1 0
𝜓𝑦 𝜓𝜋 0 −1

ª®®®¬ ,
𝑩0 = 𝑩1 =

©­­­«
0 𝛽 0 0
1 𝑐

𝜎 0 −𝑔
0 0 0 0
0 0 0 0

ª®®®¬ , 𝒉0 = 𝒉1 =
©­­­«
0
0
0
𝜌𝑔

ª®®®¬ ,
𝑪1 =

©­­­«
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

ª®®®¬ , 𝑪0 =
©­­­«
1 0 0 0
0 1 0 𝑐𝜇

𝜎
0 0 1 0
0 0 0 0

ª®®®¬ ,
𝒀𝑡 =

©­­­«
𝑥̂𝑡
𝜋̂𝑡

𝑖𝑡
𝑔̂𝑡

ª®®®¬ , 𝒀𝑡−1 =
©­­­«

0
0
0

𝑔̂𝑡−1

ª®®®¬ , 𝑿𝑡 =

©­­­«
𝑢𝑡
𝜀𝑡
0
1

ª®®®¬ .
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