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Abstract

The presence of an occasionally binding constraint due to the effective lower bound
(ELB) in New Keynesian models generally gives rise to multiple equilibria under ac-
tive monetary policy. To restore uniqueness in the model with an active Taylor rule, we
consider appropriate simple fiscal policy instruments. Without relaxing the assump-
tions of Ricardian equivalence, full information, and rational expectations, we show
that appropriate fiscal targeting rules ensure that New Keynesian models subject to
the ELB possess a unique solution.
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1 Introduction

The canonical New Keynesian (NK) model with an occasionally binding constraint aris-
ing from the effective lower bound (ELB), with full information and rational expectations
(FIRE) and an active Taylor rule! (TR), possesses multiple minimum state variable (MSV)
solutions. Thus, it is termed as “incomplete”. Furthermore, when subjected to significant
shocks, an MSV solution may not exist, rendering it “incoherent”. These crucial findings
were demonstrated in seminal works by Ascari and Mavroeidis (2022) (AM) in a stochas-
tic environment with rational expectations and Holden (2023) under perfect foresight.

This paper, maintaining FIRE, demonstrates that simple Ricardian fiscal policy (FP)
ensures coherency and completeness. This holds robustly across shocks of varying sizes
and supports. Our key finding reveals that if FP is persistent and reactive to inflation and
output fluctuations, it guarantees a unique MSV solution, while also satisfying Blanchard-
Kahn (BK) local determinacy conditions. This paper identifies two critical properties for
achieving uniqueness of an MSV solution. Firstly, at the ELB, FP stabilises the economy
when monetary policy is constrained, establishing an equilibrium path. Secondly, a coun-
tercyclical rule-based FP eliminates belief-driven equilibria when it is sufficiently persis-
tent.

To underscore the significance of this paper — and the relevance of model coherency
and completeness — we contextualise the primary contributions of AM and the literature.
While previous studies often employed simplified approaches regarding shocks in models
with the ELB, such as assuming a singular structural shock or imposing rigid assumptions
on shock duration, AM consider multiple structural shocks and their serial occurrences
within a forward-looking dynamic model with FIRE. Although this paper abstracts from
multiple structural shocks, it examines the recurring structural shock scenario.

Building on the work of Gourieroux, Laffont, and Monfort (1980) (GLM), AM derive
two main results using a linearised equation system and endogenous regime switching.
Firstly, they demonstrate that achieving coherency in ELB-constrained NK models poses a
nontrivial challenge, particularly when the inflation coefficient in the TR exceeds unity or
when optimal monetary policy under discretion does not ensure coherency. Additionally,
AM identify conditions that restrict the support of stochastic shocks, necessary to ensure
model coherency. However, these support restrictions prove cumbersome, dependent on

model structural parameters and past realisations of state variables in backward-looking

1. An active Taylor rule is one which satisfies the Taylor principle.



models. Secondly, even with support restrictions to ensure coherency, the model might
still exhibit multiple MSV solutions, potentially up to 2¥ solutions, where k represents the
number of discrete shock states.

This concern extends beyond the conventional scope of the ELB literature, which mainly
examined sunspot shocks or belief-driven fluctuations between steady states.? However,
general conditions to ensure model coherency and completeness in macroeconomic DSGE
literature remain limited, although recent papers have provided sufficiency conditions for
MSV equilibrium existence in NK models (Eggertsson, 2011; Christiano, Eichenbaum, and
Johannsen, 2018; Nakata, 2018; Nakata and Schmidt, 2019). Compared to this strand of
literature, this paper studies solution existence and uniqueness.

As highlighted in follow-up work, Ascari, Mavroeidis, and McClung (2023) show that
multiplicity of MSV solutions emerges from the interplay between rational expectations
and the inherently nonlinear nature of the ELB constraint. While they focus on relaxing
FIRE assumptions, this paper maintains the FIRE framework and proposes alternative
mechanisms, specifically emphasising the role of simple Ricardian FP, to address issues
identified by AM.

Our objective is to offer qualitative results in resolving the problem of mulitiplicity of
MSV solutions using FP. Thus, our paper adds to the studies that explored fiscal policy, the
ELB, and multiple equilibria interactions. Seminal work by Benhabib, Schmitt-Grohé, and
Uribe (2001) examined how Ricardian FP with active monetary policy leads to unique
convergence to a steady state equilibrium. However, convergence was not always to a
unique steady state and could include an unintended liquidity trap steady state. Benhabib,
Schmitt-Grohé, and Uribe (2002) extended this to establish convergence to a non-liquidity
trap steady state. Both studies assumed perfect foresight environments, while this paper
maintains FIRE.?

Our paper is closely related to the contributions of Schmidt (2016), Tamanyu (2021),
and Nakata and Schmidt (2022), which addressed the aforementioned classical concerns
of the literature on the ELB. These theoretical studies showcased how expectations-driven
liquidity traps could be avoided with appropriate FP, emphasising fiscal rule variations.
Meanwhile, examples of a more policy-focused contribution are Correia et al. (2013) and

Seidl and Seyrich (2023) which show that distortionary tax policy can perfectly replicate

2. See, for example, Eggertsson and Woodford (2003), Guerrieri and Iacoviello (2015), Kulish, Morley,
and Robinson (2017), Aruoba, Cuba-Borda, and Schorfheide (2018), Aruoba et al. (2021), and Angeletos
and Lian (2023).

3. See Definition 3 and Propositions 5 and 6 of Benhabib, Schmitt-Grohé, and Uribe (2001).



the unique rational expectations equilibrium without the ELB constraint. While these
results were quantitatively demonstrated in a perfect foresight environment with agents
making expectation errors, our work — using a textbook New Keynesian setup — encom-
passes the mechanisms of their basic model as a special case. We build on these contri-
butions by focusing on how FP can rule out the non-trivial problems of non-existence or
multiplicity of MSV solutions.

It is notable that the aforementioned literature on the ELB and FP primarily focused
on model completeness or the elimination of a liquidity trap steady state, often assuming
restrictions on the shock process or stochastic environment. Our primary contribution is to
simultaneously consider coherence, completeness, and local determinacy (BK conditions)
concerning the ELB and FP instruments. Additionally, despite the paper delving into fiscal
and monetary policy interactions,* it refrains from examining fiscal policy potency or fiscal
multipliers at the ELB.

The paper proceeds as follows: Section 2 provides an overview of coherency and com-
pleteness (CC) conditions within the context of an ELB-bound NK model and describes
the methodology used to verify CC conditions. Section 3 demonstrates how Ricardian
FP restores coherency and completeness in a purely forward-looking reference NK model
constrained by the ELB. Section 4 assesses CC conditions for an NK model with FP featur-

ing policy inertia. Finally, Section 5 concludes the paper.

2 Verifying an MSV Solution of the New Keynesian Model
with the ELB

In this section, we provide a sketch of the AM’s methodology to verify coherency and
completeness of systems of linear equations, applying the methodology to the textbook
NK model subject to the ELB. Further explanation and derivation can be found in AM or
Appendix A.

General verification for linear models. LetY; be a n x 1 vector of endogenous variables,
X; be a n, X 1 vector of exogenous state variables, and s; € {0, 1} be an indicator variable
that is equal to 1 when some inequality constraint is slack and 0 otherwise. Addition-

4. This literature is vast — see, for example, Gali, Lépez-Salido, and Vallés (2007), Davig and Leeper
(2011), Eggertsson and Krugman (2012), Billi and Walsh (2022), and Hills and Nakata (2018).



ally, let Q; denote the information set, thus allowing us to write: ¥ .1y = E;[¥%+1/€¢] and
X = Ee[ Xi41|€2].

Coherency requires that there exist some function f(-) such that an MSV solution can be
represented as ¥; = f(X;). Assume that the exogenous states X; are k-state stationary first-
order Markov processes with transition kernel K. Stack the possible states of X; for states
i =1,.., kinto a n, X k matrix X. Let e; denote the i-th column of the k X k identity matrix
I, such that Xe;, the i-th column of X, is the i-th state of X;. The elements of the transition
kernel K are K;j = Pr(X;1 = Xej|X; = Xe;) and hence, E;[X;41|X; = Xe;] = XKTe;. Then
define Y as an n X k matrix whose i-th column, Ye;, corresponds to X; = Xe;® along an

MSYV solution.® Thus, along an MSV solution we have:
E[Y1|¥% = Yei] = E[Y41|X: = Xe;] = YK e (1)
This allows us to write state-space models, and thus DSGE models, in the form:

0 = (AsiY + BSiYKT + CS[X + DSIXKT) el,

2
1([a"Y+b"YKT + "X+ d"XK ] e; > 0),i=1,...,k, ?)

Si

where A;,, B,, Cs,, and Dy, are coefficient matrices with dimensions nxXn, nXn, nXn,, and
n X ny, respectively; a, b, ¢, and d are coefficient vectors, and 1(-) is an indicator function
that is equal to 1 if its argument holds true and 0 otherwise.

The system (2) relates Y to X, and can be expressed as F(Y) = A(X), where A(:) is some
function of X, and F(-) is a piecewise linear continuous function of Y. The piecewise linear
function F(Y) can then be expressed as:

F(Y) = Z A;Se,vec(Y), (3)
Jc{1,...,k}

where € = {Y : Y € R™,s; = 1(i € ])} is given by a configuration of regimes over the

5. In other words,
Ye; = f(Xei).

6. For Sections 2 and 3, we abstract from models that feature endogenous state variables. We revisit CC
conditions for models with endogenous states in Section 4, where we study the baseline NK model with
persistent FP rules.



k states given by J, Se, is a nk X nk matrix of indicator elements,” and vec(-) is the vector
operator function.® In words: A; and €; are such that if F(Y) in (3) is invertible, then
the linear system is coherent and complete. Put another way, there exists a unique MSV
solution, as stipulated in GLM, if all the determinants of A;, | € {1, ..., k} share the same
sign. Failure of this requirement implies that the model is generally incoherent and/or

incomplete:

Theorem 1 (GLM). Suppose that the mapping F(-) defined in (3) is continuous. A necessary
and sufficient condition for F(-) to be invertible is that all the determinants det A;, ] € {1, ..., k}
have the same sign.

An application of GLM Theorem 1 to the simple Fisherian model in Aruoba, Cuba-
Borda, and Schorfheide (2018) can be found in Appendix A.1. Below we provide an ap-
plication to a textbook NK model.

A reference New Keynesian model with the ELB. Consider the canonical NK model as
set out in, for example, Gali (2015). The model in its log-linearised form with the ELB can
be written in three equations, the dynamic IS equation (DISE), New Keynesian Phillips
Curve (NKPC), and the TR:’

N . 14 A
DISE: §; = E;Jt41 — g(lt — E¢fti1) + &, (4a)
NKPC: ﬁt = ‘BEtﬁH.l + K]?t, (4b)
TR: i; = max {—y, OrTts + qbyﬁt} , (4c)

7. Note that when Y, is vectorised, and if k = 2, the first n elements correspond to state 1 and the last
n elements correspond to state 2. Thus, in essence, the elements of Se¢; map the entries of A; for the k states
to the vectorised set of endogenous variables in Y.

8. The transformation of (2) into (3) is generally non-trivial (in which the expressions of A; require
Kronecker product operations) as it presents a Sylvester equation in Y. See, for example, Kolmogorov and
Fomin (1957). However, there are two exceptions that allow straightforward computation of the Aj: n =
land n = k > 1. We make use of this simplifying assumption both in this example and the analytical
derivation in Appendix A.

9. To keep the analysis simple, we omit cost-push shocks in the NKPC and monetary policy shocks in the
TR.



and where ¢; is a demand shock. Furthermore, #; is the output gap, 7t; is inflation, and ft
is the nominal interest rate.'’ The parameters of interest in the model are: ¢, the coefficient
of relative risk aversion; §, the representative household’s subjective discount factor; «, the
slope of the NKPC; u = In(r7t*), the ELB of the nominal interest rate in deviation from the
steady state, where 7 = 1/ is the steady state gross real interest rate and 7" is the gross in-
flation target of the monetary authority; ¢,, the monetary authority’s response parameter
to output fluctuations; and ¢, the monetary authority’s responsiveness to inflation.

For analytical tractability, let k = 2 with p and g be probabilities of remaining in a posi-
tive interest rate (PIR) and zero interest rate (ZIR) state, respectively. When the constraint

on 1; is binding, the system can be rewritten as follows

A A Ut
1) [ + =0 Tt” + 1o (1) e |=0. (5)
0 1J\g) \-% -1/\gsa) 0 1 2

Whilst when the constraint is slack the system is given by

1 —K ﬁt —ﬁ 0 ﬁt+1 10 U _
e L A

The model can then be cast in the canonical form as in (2). To check whether the model
satisfies the CC conditions, it is sufficient to check the invertability of F(-), as in (3), by
ensuring that the signs of det A, and det A, are identical. Assuming p = g =1 yields

det Aj, = det (1%;? ;_1;) _ (1-p)¢y “; K(pr —1) >0, (7)
det A}, = det (1__15 _oK) - —g <0. (8)

We observe that the signs of |Aj,| and |Aj,| differ, which implies that the model is not
generally coherent under an active TR with ¢, > 1 and ¢, > 0.

10. Hatted variables denote a variable in terms of log deviations from steady state. In other words, for any
generic variable, say, X, we have:

- X -X
H=InX;-InX = L ,
X

where X is the value of X; in the non-stochastic steady state.



Figure 1: Absorbing State of the New Keynesian Model (&; = 0)
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Note: Diagram on the left depicts equilibria when the Taylor principle is adhered to. Diagram on the right
shows the PIR absorbing state for an interest rate rule that does not satisfy the Taylor principle.

We can graphically represent the CC conditions for the canonical NK model by first
considering the absorbing state of the model for when ¢; = 0. In the absorbing state we
have 7ty = fty41 = t and §; = §14+1 = . Hence, the NKPC can be written as the following
aggregate supply (AS) relation:

§ AS. 9)

Meanwhile, the DISE can be written and rearranged to give a piecewise aggregate demand
(AD) relation:
Kfn 5 TR

AD'",
-5/ (10)
—u ADELB.

=Y
Il

Clearly, the model admits two absorbing states: a PIR equilibrium, {7, 7, f} ={0,0,0},and
a ZIR equilibrium, {7, 7,1} = {~y, —@, —u}, which we can graphically see by plotting
(9) and (10) as in Figure 1.

The left plot of Figure 1 shows the incompleteness problem when the NK model fea-



tures an active TR; well studied in the literature. Absent of any shocks, the model implies
two equilibria as the slope of ADTR is steeper than that of AS. By contrast, when ¢, < 1, as
in the right plot of Figure 1, a unique equilibrium exists as the AD and AS curves intersect
once. However, as is well known, a passive TR leads to issues with local model dynamics
(Blanchard and Kahn, 1980).

Now consider the transitory state for when ¢; = %?T. For simplicity, we assume that
the shock is transitory and occurs once, in other words g = 1. As the model is completely
forward looking, the economy remains in the transitory state for some indefinite period

of time after which it jumps to an absorbing state — either a PIR or ZIR equilibrium.

PIR absorbing state. At time ¢ the economy is in a transitory state. With probability
p the economy remains in the transitory state (77, #7); with complimentary probability
1 — p the economy moves to the PIR absorbing state. Thus, the AS and AD relations can

be written as

Al = - _"pﬁ 77 AS, (11a)
o(-p) ~T _ P aT TR AT s _H

7T = p(Iqbn)y g AD T for it 2 —5n, (11b)
o(1-p) ~»T i _ AT ELB AT _®
— 7 ;T AD for it < P

ZIR absorbing state. Here we repeat the above exercise but for when the absorbing state
is a ZIR equilibrium. As before, at time ¢ the economy is in a transitory state, and with
probability p it remains in the transitory state, and with probability 1 — p it transitions to
the ZIR absorbing state. As previously mentioned, the absorbing state here now differs in
value from the PIR case, and as such, the AS and AD relations can be written as:

AT _ K AT_ﬁ(l—P)
" 1—Pﬁy 1-pp

o(l=p) ~7 | 1-p | (1-P) _ P AT TR AT o M
AT _ oV o [ — +1]y rt AD ™ for ' > 5
1-p

P n’
o(1-p) ~T | 1-p | (1=B)o B AT ELB AT o M
— 7+ [—K +1]y o T AD™" for ' < —-,

u AS, (12a)

(12b)



Figure 2: Transitory States of the New Keynesian Model (¢ > 1)
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respectively. To complete the description of this simple example, we define 0 as the ratio

of the slopes of the ADELE and AS relations:

0=

o(l=p)1=pp)

px

(13)

Figure 2 then plots the AS and AD when monetary policy adheres to the Taylor prin-
ciple (¢p; > 1) for either a PIR or ZIR absorbing state when the economy is subject to the
shock term ¢;. The plots on the left hand side of Figure 2 are for the case of 0 < 1, i.e,,
when AD is flatter relative to AS. The plots on the right in Figure 2 are for the case where

0 > 1, ie., when AD is more steep than AS. The different values for 6 correspond to



different values of p. Namely, the plots shown in Subfigure 2b with 6 < 1 are for higher
values of p than those generated for the case where 0 > 1. Additionally, the higher value
of p corresponds to a higher probability that the model remains in a transitory state each
period.

As discussed by AM and in line with Holden (2023),'! and shown in Figure 2, for the
case where 0 > 1, the only support restriction necessary for an MSV solution to exist in
the absorbing state is (r7*)™! < 1. But for when 0 < 1, the necessary support restriction

becomes:

- 0
<1land -7t < ((Pn p+—). 14
o u op B (14)

To put it simply, these support restrictions ensure that a negative shock to AD does not
lead it shifting too far to the left or above of AS, as shown in ADlT RELE of Subfigure 2b.
Derivations and further explanation can be found in Appendix A, or interested readers
can refer to AM for more detail. We emphasise that non-uniqueness of equilibria in the
baseline NK model is driven by exogenous uncertainty captured by p. We proceed with
analysing how simple Ricardian FP can counteract the effects of uncertainty and restore

coherency and completeness.

3 Fiscal Policy and Coherency and Completeness

In this section, we show how Ricardian fiscal policy that consists of government spending
can render a baseline NK model subject to the ELB coherent and complete.

Model. We augment the baseline NK model with a simple FP setup following Woodford
(2011). The model is otherwise standard, and derivation is given in Appendix B. In what
follows, we show that under simple fiscal feedback rules, the model can generate a unique
MSV solution in the presence of the ELB under certain restrictions on FP. The model is
described by the DISE, NKPC, TR, government budget constraint, and the natural rate

11. As Holden (2023) states, existence under rational expectations requires shocks to have sufficient mass
at zero.

10



given by:

A A C » R N

X = BE4Xpq — g(lt — Bty = 7)) + &, (15a)

~ ~ N € W AW cac 1 as 04

iy = BEsTtpn + 10y Xy + — | WO, - WO — =1 — =& |, (15b)

O € c

I} = max {—y, Qrty + qbyo?t} , (15¢)
98t =TT + 1 (1= Q)T +T°8] + 172 + 9% (15d)

o OY . . o .

T’tn = C]/ﬂ EtAﬂt+1 - EtATf+1 - TgEtAgt+lr (158)

where ¢ = C/Y is the steady-state consumption-output ratio, ¢ = G/Y is the steady-state
government expenditure-outputratio, 9, = ¢ (1 +1°+ %), Iy = (1 +1¢+ 7% + ﬁ—(‘; + go),
and x, and x; = 55 denote slopes of the NKPC and coefficient on government expendi-
ture, §;, respectively. Additionally, consumption taxes are 1/, labour income taxes are 7,,
production taxes are 7}, T is lump-sum tax to output ratio, and ¢; are household preference
shocks.

The model is closed with a rule for government expenditure of the form
Ei8t+1 = pe&t + Ynfts + Py Xy, (16)

where ¢ and ¢, denote the degree of reaction of taxes to deviations of inflation and
the output gap, respectively. Throughout this section, we assume that the rule is “fully
inertial”, that is p, = 1.'?

Calibration. In what follows, for all quantitative results the model is calibrated accord-
ing to the values in Table 1 unless specified otherwise. These parameter values are stan-
dard in the NK DSGE literature.

12. This assumption allows us to check if the model is coherent and complete analytically. We relax this
assumption in Section 4.

11



Table 1: Model Calibration

Parameter Value Description

0 2 Coefficient of relative risk-aversion
() 2/3  Frisch elasticity of labour supply
B 0.99  Discount factor
T° 1/4  Steady-state level of fiscal instrument
Ky 0.23  Slope of NKPC
pe 1/3  Coefficient on fiscal instrument
)4 3/4  Calvo probability
€ 10  Elasticity of substitution between goods
c 3/4  Fraction of consumption in output
g 1/4  Fraction of government spending in output
Pr 1.5 Weight on inflation, Taylor rule
Oy 0.2  Weight on output gap, Taylor rule

3.1 Permanent Fiscal Policy Change

Suppose production taxes are set as %f =c (‘l’w %f" - % gt), and consumption taxes are zero,
¢ = 0, then the effects of fiscal policy are offset in the NKPC:"?

Tt = ﬁEfﬁHl + Kyft. (17)

Thus, government spending only directly affects aggregate demand. We then have the

following proposition:

Proposition 1. A baseline New Keynesian model with fiscal policy that consists of government
spending, output taxes, labour income taxes, and lump-sum taxes as defined in (15), is generally
coherent and complete when the reaction of fiscal policy to inflation and the output gap, Y and 1,
respectively, as described in the fiscal rule Equation (16), is sufficiently strong.

Proof: Appendix B.2.

To intuit this proposition note that Ricardian equivalence holds in this environment,
and the absence of fiscal instruments in the NKPC (17). As such, the determinacy and

13. Absence of direct supply-side effects allows for analytical derivation of CC conditions. Government
expenditure in the NKPC could be offset using a different combination of taxes, for instance ¢ = 7 = 0 and
-1} /€ = (0/c)§:. Equivalently, this would also be the case under preferences as in Greenwood, Hercowitz,
and Huffman (1988) or inelastic labour supply.

12



Figure 3: Coherency and Completeness Region for Inflation and Output Gap Fiscal Rule

(Equation (16))
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are shown in Figure 3. Using our baseline
is sufficiently large. Mechanically, a strong

and when 1
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-7

The region for which the model satisfies the CC conditions as a function of the fiscal
2

those of MP in a canonical New Keynesian model: increases (decreases) in inflation and
the output gap must be matched by a proportionate increase (decrease) in future lump-
calibration, we see that the model generally satisfies the CC conditions in the negative or-
enough reaction on the part of the fiscal authority to inflation and output deviations leads
to a unique MSV solution by ensuring an intersection between AD and AS.'* Further-
more, we note that the degree of reaction on the part of the fiscal authority to the output
gap is largely irrelevant as to whether or not the model satisfies the CC conditions. More-
over, the rule in Equation (16) nests the special case where FP can fully replicate mone-
tary policy as in the simple case considered in Correia et al. (2013) and Seidl and Seyrich
(2023), who termed this as “unconventional fiscal policy”. This is the case if FP activates
14. This is illustrated for a simple case in Figure 5.

Blue circles denote regions where coherency and completeness conditions are satisfied. Red triangles denote
equilibrium selection properties of FP are identical — and in fact work hand-in-hand - to

region where the model is either incoherent or incomplete.
authority’s reaction parameters, ¢, and 1,

thant of ¢ and 1, space, R

sum taxes.



Figure 4: Coherency and Completeness Region for Simple Inflation Targeting Fiscal Rule

(Equation (18))
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In order to clarify our intuition and understand the mechanism driving requirements

Blue circles denote regions where coherency and completeness conditions are satisfied. Red triangles de-

notes region where the model is either incoherent or incomplete.
at the ELB, and its feedback coefficients are set such that they exactly mirror the effects

of the counterfactual unconstrained monetary policy. Further details and derivations of
this special case are provided in Appendix B.3. Analogous results hold when monetary
policy is conducted optimally under discretion, which we provide analytical derivation

and so the requirement for local determinacy — BK conditions

of the CC conditions, we focus on a simplified version of
strictly targets inflation (¢, = 0) with the following rule:

for in Appendix B.4.

where



When the inequality (19) does not hold, then the response of the real interest rate with
both monetary and fiscal policy is insufficient for a local determinate equilibrium. In this
sense, one can think of both MP and FP together as being passive, akin to a violation of
the Taylor principle in the canonical New Keynesian model. Conversely, when the above
inequality holds and MP is constrained at the ELB, then FP rules out belief-driven liquidity
traps, essentially acting as a substitute for MP in the constrained regime.

We then plot the region for which the model with the simplified rule (18) satisfies the
CC conditions for parameters of ¢, and 1, in Figure 4. Following the intuition underlying
condition (19), if we are interested in parameter values of ¢ and ¢, that satisfy both BK
and CC conditions then we can restrict our attention to the right-half of Figures 3 and 4.
In order to satisfy both BK and CC conditions, and conditional on ¢ > 1, then ¢ must
be set to at least approximately 7.5 given our calibration values.

In fact, one key insight of this paper is to explore the niche case where the model satis-
ties the CC conditions but fails to satisfy the BK conditions. This can be illustrated graphi-
cally with some further simplification about the nature of shocks. Consider the simple FP
rule, Equation (18), and the absorbing state case with ¢; = 0. The AS curve takes a similar

form as in Equation (9), and the AD curve is piecewise linear, giving us the following

system:
. Ky o
K
+y" %% AD™Rforft > —y,
P (¢HK V)= H (20b)
Yt - ADFELB for ft < —p.

The PIR equilibrium is trivial and is given, as before, by {7, %, i } = {0,0,0}. The ZIR

u A-pu
l]lJ*—l’ Ky(w*_l)/ (U}

equilibrium here is {7, £, i} = {

PIR absorbing state with active FP (¢* > 1 and ¢* < —¢5). If ¢* > 1 or ¢* < —¢y,
the economy cannot be at the ELB in the absorbing state. That is, for an inflation level
that is higher than the lower bound on the nominal interest rate, t > —pu, the nominal
interest rate as per the TR is unconstrained, and so the following equality — obtained by
substituting (20a) into ADF!B in (20b) - implies an inflation rate that is higher than —u:

u
pr-1

=
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Thus, inflation cannot be at its ELB steady state level, and by implication the nominal
interest rate cannot be at the ELB. Hence, no ZIR equilibrium can exist with an active FP'°

rule as in Equation (18).

Absorbing states with passive FP (¢ < 1and 0 < ¢* + ¢, < 1). Here, the ZIR equi-
librium is consistent with the ELB constraint on the nominal interest rate since implied
inflation is less than or equal to —u. Passive FP also implies that the slope of AD™R is
flatter than that of AS, hence there are two absorbing — both the PIR and ZIR equilibria.
Moreover, a passive FP rule implies that in a ZIR equilibrium the inflation rate is lower
than that of the ZIR equilibrium with no fiscal rule. Figure 5 illustrates the two cases.

We proceed with analysing the transitory equilibria with ¢; = E?T in each of the cases.
As before, the economy remains in a transitory state for an indefinite amount of time,

before transitioning to an absorbing state thereafter.

Transitory states with active FP (¢* ¢ (—¢,,1)). With probability p, the economy re-
mains in a transitory state and jumps to the PIR absorbing state with complimentary prob-
ability 1 — p. AS and AD are given by

AT Ky o1
= 2T AS (21a)
1-pp
o(l-p)  ~T _ 4 AT TR AT 5 M
A AD or it 2 =50 (21b)
ol-p) oT _ _# _ _ P 5T ELB AT <
T e e 14 AD™" for it* < P

When ¢* > 1, ADTR and ADE® have negative slope. The model thus satisfies the CC
conditions. When 1 < —dy, the slopes of ADTR and ADEL® are positive and ADELB is
flatter than AS. This implies a unique transitory equilibrium.

Transitory states with passive FP (¢* € (—¢x,1)). In the case where ¢* € (—¢x, 1),
there are two potential absorbing states. In the PIR equilibrium, we have the system as

above. The slope of ADTR is negative, while the slope of ADELB

can either be positive or
negative. Hence, for some values of p, the slope of ADELE can be flatter than that of AS,

which implies incoherency or incompleteness in absence of support restrictions. This is

15. Our use of “active” and “passive” to describe FP should not be confused with the more conventional
use of these terms established by Leeper (1991) to describe monetary and fiscal policy interactions.
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Figure 5: Coherency and Completeness with Active and Passive Simple Fiscal Rules (Ab-

sorbing State; ¢; = 0)
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Figure illustrates uniqueness of the absorbing state under active fiscal policy (top-left and bottom-right). If
the fiscal policy is insufficiently aggressive, there are multiple absorbing states (top-right and bottom-left).
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the case when
_ 9ADFF/9z _ o(1-p)(1-pp)

0= dAS/dx kyc(p —¢*)

<1 (22)
If the ZIR equilibrium is the absorbing state, the system takes the form

1-—
'ﬁT Ky AT+ﬁ( p) H

= X " AS, (23a)
1-pp 1-pp -1
(I1-p)o T _ (1-p)u (1-B)o _ 4 AT TR
JONN ek T |+ 1| - m AD™, (23b)
(1-p)o o7 _ _ (-pp [(l—ﬁ)a 4 1] _ B _ __P 5T ApELB
c(p—*) W =Dp—-y*) [ cxy (p—¢*)  clp—¢*) )

Since FP is passive, the slope of ADTR is negative and the slope of ADELE can be positive.
In this case, the model can be incoherent or incomplete due to ADELB being flatter than
AS (0 < 1). The four cases related to active and passive FP with both absorbing states are
illustrated in Figure 6.

Relationship to baseline NK model and importance of commitment. For the baseline
NK model considered in Section 2, Equation (13) summarises the conditions under which
the model possesses a unique MSV solution. It is worth reiterating that unlike the case of
a model with FP, the baseline NK model implies that the slope of ADEL® is determined
only by exogenous uncertainty p and deep structural parameters.

Thus, one can argue that if the effects of uncertainty can be counteracted by FP, the
model will have a unique MSV solution thus satisfying the CC conditions. The condition
on 0 implies that the probability of shock persistence, p, must be low so that CC conditions
are satisfied. An analogous condition for the model with permanent fiscal policy changes
can be drawn from Equation (22); if 6 > 1, the model is coherent and complete. This con-
dition shows that unlike the baseline NK model, FP can alleviate the effects of exogenous
uncertainty on the slope of ADELB, ensures that the CC conditions are satisfied.

The importance of persistence implied by (18) cannot be overstated and is a key point
of this paper. To highlight this, consider the case where the fiscal targeting rule is given in
deviations and not in growth rates; §; = ¥7t;. This will imply the following ADELB/AS
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Figure 6: Transitory States under Active and Passive Fiscal Policy
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Top row shows transitory state with a positive interest rate absorbing state with active fiscal policy. Top left
panel shows procyclical fiscal policy. Top right shows countercyclical fiscal policy. Bottom panels shows
passive procyclical fiscal policy regime. Passive fiscal policy in general implies non-existence of solution or
two solutions as a special case. Active fiscal policy implies existence of unique solution.

slope ratio that is required to be greater than unity to satisfy the CC conditions'®:
1-p)1 -

0= O( p*)( pﬁ) >1,
p+y(1-p)

16. We provide more discussion and show how cﬁemporaneous fiscal policy rules can ensure equilib-
rium uniqueness in a special case where monetary policy targets the output gap in Appendix B.6.




which does not hold if p is sufficiently large for any bounded value of ¢*.

The key intuition for permanent policy changes can be drawn from the fact that the FP
instrument is present in the AD relationship in Equation (15a) in expectation. Thus, any
rule that targets contemporaneous deviations would imply additional terms in expecta-
tion that add uncertainty to the system. This highlights the importance of commitment
to future changes in policy that depend on contemporaneous deviations of endogenous
variables as in, for example, (18). The assumption that a fiscal authority needs to apply
a targeting rule to growth rates of the instrument and not to its deviations is rather re-

strictive, however. We relax this assumption in Section 4 allowing for an inertial rule with
pg < 1.

3.2 Equivalence of Simple Fiscal Policy Regimes

So far, we have considered a standard NK model augmented with a simple FP setup where
government spending targets inflation and output gap. The key difference between this
model, described by the system (15), and a standard NK model as in Equations (4a)-
(4c) is the presence of a fiscal instrument in the DISE. As shown above, if FP uses this
instrument to react to exogenous disturbances aggressively enough, the model satisfies
the CC conditions. Existence of such an instrument in the DISE is, however, not exclusive
to the fiscal setup we have discussed.

For example, consider the case where the fiscal authority levies consumption and wage
taxes, ¢ and 7%, respectively, and only redistributes the taxes as lump-sum transfers, ;.
Additionally, assume that there are no production subsidies, 7; = 0, Vt. Then, if the fol-
lowing condition holds, the effects of FP are offset in the NKPC in Equation (15b):

WORL = Pie, (24)

The natural interest rate in the DISE can then be written as:

» R o
1’tn = —EtATf_H — Egt (25)
where A1y, is the consumption tax growth rate.

Thus, FP can replace active monetary policy when the latter is constrained thus render-
ing the model linear and guaranteeing that the CC conditions are satisfied. This is in line
with the results in Correia et al. (2013) and Seidl and Seyrich (2023). Under this formu-
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lation, the strength of the fiscal instrument (in the DISE) may be higher or lower than in
(15), depending on the values of the model’s structural parameters. For example, under
our calibration in Table 1, the coefficient on the fiscal instrument (government expendi-
ture) is g, while on the former it is W¢/o. While qualitatively the role of the instruments
in both cases is identical, the degree of reaction of A1, , is required to be greater than that
of Agt+1 since the coefficient on the former is smaller.

Using this alternative setup, we show the CC regions in Figure 7 under: (i) simple
inflation targeting in Figure 7a and (ii) inflation and output targeting in Figure 7b. The
relevant coefficients of the canonical form are given in Appendix B.5. As before, if the de-
gree of reaction of differentials of consumption tax to inflation is large enough, the model
is coherent and complete. The intuition for this case is simple and mirrors that in Section
3.1.
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(a) Simple Inflation Targeting FP (¢, = 0)

Figure 7: Coherency and Completeness Regions for Consumption Tax Fiscal Policy
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Blue circles denote regions where coherency and completeness conditions are satisfied. Red triangles denote

regions where the model is incoherent or incomplete. Consumption tax rule is given by A



4 A New Keynesian Model with Inertial Government Spend-
ing

We have shown in Section 3.1 how a permanent change in fiscal policy can ensure co-

herency and completeness. In this section, we generalise over the fiscal rule in Equation

(16) and allow for inertia, in other words p, < 1, instead of a permanent policy change.
Consider the baseline NK-FP model described by (15). But assume that there are no

distortionary taxes (%} = %}

t
(16) to account for inertia in ¢;. Specifically, we replace (16) with:

= 1,” = 0,Vt). We close the model by augmenting the rule

&t = pe&i-1+ Yrtty + Yy iy, (26)

where p, € (0,1) is a persistence parameter. Thus, the rest of the model is given by:

~ ~ C (» N ~

Xt = EsXpp1 — = ( t — EiTtpy1 — 7’?) , (27a)
’f(t = ‘BEtﬁt.H + nyAt - Kggt/ (27b)
2.\t = max{_,U; anﬁt + ¢y£t}/ (27C)

with

A Y A

Py = 2 (8EtAG + &),
The system in (27) can be evaluated about two absorbing states, either PIR or ZIR. About
the PIR steady state, it must be the case that {%, 7, i, 2} ={0,0,0,0}. The existence of the
PIR steady state is trivial to reconcile. When policy is effective, the inflation and output

gaps are closed and the system of equations gives the solution in the PIR absorbing state.
However, about the ZIR absorbing state we have that i = —y, thus giving a solution of the

cnnoay | (=P =pg) +KgPn lpyﬁ?+lpnﬁ}
1718k = { K}/(l - pg) — Kethy 1-pq .

One can observe that under certain fiscal policy rules, the above ZIR equilibrium is not

form

’ IHI

(28)

consistent with the constraint on the TR and, thus, the ZIR equilibrium is ruled out. Specif-
ically, we require that £ be sufficiently large such that the ELB constraint on i is not bind-
ing:

H(l ~ an) o

y
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This implies
1-¢n S (1-B)1 - pg) + K5
by Ky (1= pg) = xg¥y

with the LHS being negative under conventional restrictions on TR coefficients. As pg

4

tends to unity, we get

(1_,8)(1_pg)+7<g’7bn l,bn 1_¢n

im =——< ,
ps—1  Ky(1—pg) —Kgihy Yy Py

which holds under countercyclical fiscal policy, ¥, < 0, P < 0 with ¥ sufficiently large
in absolute value. Thus, under countercyclical fiscal policy, if p, is sufficiently large there
cannot exist a ZIR absorbing state. This analysis highlights that a ZIR equilibrium can
be ruled out if (i) the monetary authority targets the output gap and (ii) fiscal policy is
sufficiently persistent and countercyclical.

As the model contains an endogenous state it cannot be represented as a finite-dimensional
piecewise linear function and the GLM result does not apply. While we were previously
able to obtain analytical expressions for which the model satisfied the CC conditions, this
is no longer feasible. Thus, we have the following result that we verify numerically using
an algorithm that is based on the work by AM:'” A New Keynesian model subject to an
occasionally binding ELB constraint on interest rates and with fiscal policy as described
in (27) satisfies the coherency and completeness conditions if fiscal policy is sufficiently

persistent and countercyclical.

4.1 Verifying Coherency and Completeness with an Endogenous State
Variable

In Section 3 we focused on a model that did not feature endogenous state variables. In

other words, in the model’s canonical form representation,

0= Asth + Bsth+1|t + CstXt + DstXt+1|t + Hsth—lr
L(a" Y +b Yo+ ¢ Xe +d Xpsar + h Y1 > 0),

St

17. AM developed an algorithm to verify the CC conditions for baseline New Keynesian model subject to
the ELB on interest rates, active TR, and whereby the TR exhibited persistence.
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we assumed that the coefficient matrix Hs, = O, and the coefficient matrix h = 0. This
was to keep the computation and verification of the CC conditions analytically tractable
by omitting endogenous state variables. With these assumptions, an MSV solution could
be represented as ¥; = f(X;) by the time-invariant matrix Y; and variables along an MSV
solution satisfy the condition (1).

However, this assumption is restrictive and makes assessment of CC conditions in stan-
dard DSGE models limited, particularly in the literature exploring the monetary and fiscal
policy mix and ELB. In this section, we loosen this assumption and consider a canonical
NK-FP model with an endogenous state variable, namely government expenditure.

With endogenous states, along an MSV solution we have

E[Y%41]Y = Yie;, X; = Xe;] = Y

1K' e, (29)

i
where Yt ")

non-trivial computational challenge: the support of ¥; is exponentially rising for a given

gives the support of ¥;;1 when ¥; is in the i-th state. However, this presents a

initial condition ¥. Therefore, an MSV solution cannot be characterised by a finite-dimensional
system of piecewise linear equations. This requires a different method of analysis to that
of Section 3.

In the fashion of AM, we solve the model recursively from some terminal state t = T.

For simplicity, assume that the endogenous state variable is a scalar, Hs,Y;—1 = hs, -1,

1
where hy, isnx1and y; = g"Y; is a linear combination of ¥; and where g = (O 00 1) .
For a date T whereby t > T, the MSV solution f(y:-1, X;) can be written as

Yt = Gyt—l +7Z,

where G and Z are n X k matrices. Z captures the portion of ¥ that depends on exogenous
variables X;. In the case of no exogenous variables, we have that G = O and so Y; = Z,
yielding the standard case with a time invariant Y and when the analysis of Section 3
applies. The columns of G return the coefficients of y;_1 in the MSV solution, mapping it to
different states of X;. Assume, as before, that k = 2, whereby the “bad state” corresponds
to i = 1, and the “good state” is given by i = 2. In other words, i = 1 is the ZIR state and
i = 2 is a PIR state. Then the endogenous dynamics in the bad state can be different from
the good state.

With no endogenous dynamics, where Y = Z, we can put the model in k-state canonical
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form as in (2). With endogenous dynamics, the equivalent expression is given by

0= (Ast/,.Gei + hg,, + BstliGKTeigTGei) Y1

(30)
+ (A5, Z + B, ,GK e;g"Z + B, ZK" + C5, X + Dy, XK7) ¢,

foralli = 1,...,,k. For a given regime | corresponding to the k states and their tran-
sitions, {(PIR,PIR),(ZIR, PIR),(PIR,ZIR),(ZIR, ZIR)},'® a slackness condition for the
constraint s; ; is determined which gives a system of 2nk polynomial equations in the 2nk
unknowns G and Z by equating the coefficients on y;_; and the constant terms to zero,
respectively. As these conditions are polynomial and not piecewise linear in G and Z, the
algorithm and theorem of Gourieroux, Laffont, and Monfort (1980) is no longer suitable to
check coherency. Instead, we build on the algorithm and “brute force” numerical solution
method of AM,"” which essentially goes through all possible 2¥ | regime configurations
to check if there are any feasible solutions that satisfy the inequality constraints.

The model can be solved backwards starting from some terminal date T. We know that

at T, the solution to the model takes the following form
Yr = Gpyr-1+Zj, (31)

where Jy € J, and where J defines the configuration of regimes in T. As we explain in
Appendix A4, in order for CC conditions of a DSGE model with an endogenous state
variable to be satisfied, the determinants,

k
A, | = ]_[ det (As; ,, + Bs; .G, KTeig™), Vt<T, (32)
i

must all have the same sign. If this indeed the case, then the model solution is given as:

-1
Yr-1ei = - (AST—l,z' + BST—1,iG]0KTeigT)
[(BST—l,iZIOKT + CST—l,iX + DST—l,iXKT) e + hST—l,in_z] ’

Iterating the solution backwards implies that all the determinants of Aj,, . j._, must have

18. See (60) in Appendix A.4.
19. See Appendix A.5.2 of their paper.
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the same sign. The recursive solution will be given by

Yi =Gy, Y1+ Zgo, s

where Gy, j._, and Zj, . j,_, can be computed recursively using

-1
Z]O--‘/]T—t/i = - (Ast,i + BSt,jG]o,---,]T—t—lKTeigT) (33)
(Bst,iZ]O/mJT—t—lKT + Cst,iX + DSMXKT) e;,
-1
G]O/n-JTft/i == (Ast,i + Bst,iG]O/---/]T—t—lKTeigT) hst,z" (34)

The recursive solution from terminal T solves the model backwards to t = 1 and implies up
to 2T~V solution paths. Given some initial condition, 1o, and conditional on satisfaction
of CC conditions, the recursive solution is unique. If the CC conditions are not satisfied,
there can be either no or multiple solutions.

We thus apply the following algorithm to check CC conditions assuming that the shocks
are two-state Markovian. First, calculate Gj, and Z;, from (58) and (59) for four possi-
ble regime configurations in Jo. For each of the four regime configurations in J; compute
|Ajop |- If for some regime configuration o, |.Aj,j, | have the same sign, a unique solution is
possible; or else we conclude that no unique solution exists. Second, for all configurations
of Jo, where |Ajj, | have the same sign, compute Gj,j, and Z;j, using (33) and (34). Third,
continue solving backwards for each Jr_; until t = 1. If t = 1 can be reached with: i) the
condition on the signs of determinants being satisfied along the solution path; and ii) the
model solution being consistent with the implied s; ;, V¢, then we can conclude that the

model is coherent and complete.

Application to the New Keynesian model with fiscal policy inertia. The system of
equations in (27) can be cast in the canonical form (30) with relevant coefficients given in
Appendix B.7. We plot regions where CC and BK local determinacy conditions are sat-
istied in Figure 8 for different values of pg. As fiscal policy becomes more persistent, the
CC region becomes larger. Moreover, the figure shows that the parameter space where
CC conditions are satisfied largely corresponds to regions where the model satisfies BK

conditions (blue circles).
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Figure 8: Coherency and Completeness Region with Persistent Fiscal Rule
pg = 0.25
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Note: Figure shows regions where both coherency and completeness and Blanchard-Kahn conditions are
satisfied (blue circles) for different values of policy inertia, p,.
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To satisfy CC, the fiscal policy is required to be sufficiently persistent and aggressive.
First, the intuition for persistence can be drawn from the model considered in Subsection
3.1. There, we considered the special case where p, = 1, which implied that the fiscal
authority commits to a permanent policy change in reaction to deviations of inflation and
the output gap. Committing to the policy change in this case can be seen as a form of ex-
pectations management as the fiscal authority promises to change spending permanently
in response to low inflation. This promise can be seen as a factor that reduces fundamental
uncertainty in the system. Second, the policy is required to be sufficiently aggressive to
guarantee that its effect on the system is sufficiently large to eliminate multiplicity of equi-
libria. Much like the Taylor principle requires the monetary authority to react by more
than one-to-one to inflation, we require that fiscal policy is sufficiently aggressive to guar-
antee a unique solution.

Other approaches in the literature (price level targeting (PLT) in Holden (2023) and
unconventional monetary policy (UMP) in AM and Ikeda et al. (2021)) rely on a similar
mechanism to guarantee uniqueness. As argued in Holden (2023), PLT rules can restore
uniqueness in the presence of an occasionally binding ELB constraint as such a policy
implies a promise about future inflation given inflation today. If monetary policy is com-
mitted to a given price level path, the monetary authority promises that a period of low
inflation today will be followed by a period of high inflation in the future. Thus, agents
expecting high prices in the future increase their consumption in periods of low inflation
and, by implication, the system has a unique solution around the PIR absorbing state. The
commitment to higher inflation in the future delivers sufficient information about the ex-
pected dynamics of the system that alleviates uncertainty that would otherwise engender
multiplicity and, by implication, pins down the unique solution much like persistent fiscal
policy.

As shown in AM, the baseline NK model with UMP as in Chen, Ctrdia, and Ferrero
(2012) satisfies the CC conditions if UMP is effective enough. This result is consistent
with the logic presented above. When the ELB is binding, the effect of UMP on model
dynamics needs to be sufficiently strong to pin down a unique solution. In this case, UMP
is used to alleviate the effects of exogenous uncertainty and ensure that the solution is
unique around the PIR absorbing state. This is in line with the restrictions we establish

for FP such that it guarantees a unique solution.
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5 Conclusion

This paper explores whether fiscal policy can restore coherency and completeness in a
baseline NK model subject to an occasionally binding constraint on the interest rate that
is generally incoherent in absence of FP. Our findings suggest that simple Ricardian FP
can restore coherency and completeness thus guaranteeing a unique solution that is also
locally determinate. We establish that, to guarantee MSV solution uniqueness and local
determinacy, FP needs to be sufficiently persistent and aggressive.

First, we analytically verify that if the fiscal authority is able to credibly commit to a
sufficiently strong countercyclical permanent policy change in response to an exogenous
disturbance, coherency and completeness of the model is restored. This conclusion is ra-
tionalised by the fact that fiscal policy is not constrained by the ELB and provides an active
policy response when monetary policy is constrained. Moreover, by committing to a per-
manent policy change, the fiscal authority is able to alleviate the fundamental uncertainty
that engenders multiplicity of equilibria in the baseline NK model.

Second, we find that the fiscal response need not imply a permanent policy change but
rather it has to be sufficiently persistent to guarantee existence and uniqueness of an MSV
solution. The persistence property of the policy rule, coupled with it being sufficiently
countercyclical, are needed to eliminate belief-driven equilibria and pin down a unique
solution. By showing this, we address the main concerns raised by Ascari and Mavroeidis
(2022) about NK models featuring occasionally binding constraints.
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A Verification of Model Coherency and Completeness

This appendix provides an overview of the canonical NK model subject to the ELB, and
conditions required to adhere to the CC conditions. In other words, we illustrate the con-
ditions that the model must satisfy to have a unique MSV solution in the presence of oc-
casionally binding constraints.

A1 Methodology of Ascari and Mavroeidis (2022)

As stated in AM, many solution methods of log-linearised models which feature the ELB,
such as Eggertsson and Woodford (2003), Guerrieri and Iacoviello (2015), Kulish, Morley,
and Robinson (2017), Eggertsson and Singh (2019), and Holden (2023), can be verified
for coherency in a simple manner. DSGE models can be written in the following canonical
form:2"

0= ASth + BSth+1|t + CStXt + DStXt+1|t + HS{»Yt—ll

Sy = 1(ﬂTYt + bTYt_,_”t + CT}QL + dTXt+1|t + hTYt_l > 0), (35)
The key contribution of the paper by AM is that it analyses (35) with rational expecta-
tions and Markovian shocks with discrete support. This was as opposed to GLM which
analysed the coherency of a system like (35) when B;, = H;, = Oand b = h = 0.
In other words, with no endogenous state variables and no expectations on future real-
isations of the endogenous variables. If the model features endogenous state variables,
H;, # O,h # 0, the canonical form (35) is not piecewise linear and, thus, the standard
approach presented by GLM does not apply.

Coherency requires that for the system (35) there exists some function f(-) such that an
MSV solution can be represented as ¥; = f(X;). Assume that the exogenous states X; are
k-state stationary first-order Markov processes with transition kernel K. Stack the possible
states of X; for statesi = 1, .., k into a n, X k matrix X. Then, let ¢; denote the i-th column
of the k X k identity matrix I, such that Xe;, the i-th column of X, is the i-th state of X;.”!
Then define Y as an n X k matrix whose i-th column, Ye;, corresponds to X; = Xe; along
an MSV solution. Thus, along an MSV solution we have:

E[Yi1|¥ = Yei] = E[¥%41]1X; = Xei] = YK e;.

Substituting this into (35), yields Equation (2) in the main text.

Example: Simple Fisherian Model. To demonstrate the methods of AM and GLM, con-
sider the simple model taken from Section 2 of Aruoba, Cuba-Borda, and Schorfheide

20. Here H;, is an n X n coefficient matrix and h is a coefficient vector.
21. The elements of the transition kernel K are K;; = Pr(X;11 = Xe;|X; = Xe;) and hence, E;[X;41]|X; =
Xe;] = XK Te;.
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(2018), which consists of the Euler equation,

1+
1=E [Mt t+1 ! (36)
Tl +1
and a TR that only targets inflation,
. « [ TU Pn
i =max {17 ()7, e > 1, (37)

where M; ;11 is the stochastic discount factor and the steady value of the gross real interest
rate is given by ¥ = 1/M = (1 + i)/n. The law of motion of M; ;.1 is given by a 2-state
Markov process with a transitory state ! exp(~rL) > r~! and an absorbing state r ! with
transition probabilities p and g, respectively.””

Combine the two equations above and log-linearise about the non-stochastic steady
state to get

Eiftr1 = E¢M; 141 + max {—u, ¢Dnﬁt} ,

which can be cast in canonical form (2) as follows:

Al A N T, exp(-rt) 0) 7
“on i) ) (5L, 2K+ (1 0) (T Ok

if sy = 1({¢n7ts + > 0}). However, if s; = 1({¢n7t; + p < 0}) then we have

R exp(—rL) 0 exp(—rL) 0
0=t ALK+ 0 (T Y o [T Y

where the transition matrix K is

K:(lfq 1;’”), (38)

R T
and where Y; = #t; and Xy41 = (Mt/t.:,.l 1) . The coefficient matrices®®

are givenas Ag = 0,
=—¢n,Bo=B1=1,Co=(0 p),Ci=(0 0),and Dy =D; = (-1 0). The coefficient

vectors are givenas a = ¢, b =0,c = (0 y)T, and d = (0 O)T.

22. rL < 0is a simple negative real interest rate shock, representing a temporary liquidity trap.
23. In this example, since n = 1, some of the coefficient matrices are scalars.

36



The coefficient matrices A in (3) are given by

Aj =Aihb+BiK, |1 =12},

Aj, = ere] Aj, + eze, Aj, o =12},
Aj, = exe; Aj, +ere] Ay, J3={1},
Aj, =Aolr + BoK, J4=0.

(39)

As] € {1,...,k} and k = 2 — and | contains all configurations of combinations of the k
states — we can think of the above equations as transitions between positive and negative
states. Specifically, positive (PIR) and zero interest rate (ZIR) states: Aj, and J; = {1,2}
is associated with being in the PIR state and remaining in the PIR state, A, and |, = {2}
is associated with being the ZIR state and transitioning to the PIR state, A, and J3 = {1}
is associated with being in the PIR state and transitioning to the ZIR state, and .Aj, and
Ja = {0} is associated with being in the ZIR state and remaining in the ZIR state.
Substituting the coefficient matrices into (42), the determinants of the A; are:

|AL] = (orn = 1) =p = q + ¢n),
ARl =p(1—dr)+9 -1,

|‘A]3| =p- 1 +f](1 _qbn),

Ayl =p+q-1.

(40)

Since ¢, > 0 (satisfaction of the Taylor principle), and 0 < p, g < 1, it is straightforward
to see that |Aj,| > 0 and |A},], |Aj;| < 0, and so this is a violation of the CC conditions
according to Theorem 1 of GLM.

A.2 Coherency and Completeness of the Canonical New Keynesian Model

Below, we provide a sketch of the insight of AM as applied to the canonical NK model,
(4), but for simplicity ¢, = 0. Then assume as before that k = 2 and the transition kernel

is given by
(P 1-p
K = . 41
(1_q g ) (41)

The coefficient matrices A; in (3) are given by

‘Ah = A1l + B1K, ]1 = {1,2} (PIR,PIR),
Aj, = ere] Aj, + eze, Ay, o = {2} (ZIRPIR),
A]s = eze;Ah + 818;./[]1, Iz = {1} (PIR,ZIR),
.A]4 = Aol + ByK, ]4 =0 (ZIR,ZIR).

(42)

As] € {1,...,k} and k = 2 — and ] contains all configurations of combinations of the k
states — we can think of the above equations as transitions between positive and negative
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states. Specifically, positive (PIR) and zero interest rate (ZIR) states: A;, and |1 = {1,2}
is associated with being in the PIR state and remaining in the PIR state, A, and |, = {2}
is associated with being the ZIR state and transitioning to the PIR state, A;, and J3 = {1}
is associated with being in the PIR state and transitioning to the ZIR state, and .A;, and
Ja = {0} is associated with being in the ZIR state and remaining in the ZIR state. The
relevant coefficient matrices of the canonical form (2) are given by

(1 —x (1 —x _ (=B O
el 5 (3 mene(1 )

Observe that, in the special case where p = g = 1, the determinants of A}, and Aj, are:
1-8 —«x| x(pr—1)
B o

|AL] = | p.-1
N

1- —K
> O/ |‘A]4| = ‘ _lﬁ 0
[0

K
=--< 0. (43)

Thus, we observe that with an active TR (¢, > 1) the function F(Y) is not invertible and,
hence, the model is generally incomplete. Additionally, in Appendix A.3 we show an
analytical derivation of the CC conditions. Denoting ¢, as

. o
Pr=pt+q-1-—[1-plp+q-DI2-p-7q),
then the model satisfies the CC conditions when

Pr < ¢r, if P >0, (44a)
or <1, if ¢y <O. (44b)

A.3 Analytical Derivation of CC Conditions

To attain an analytical expression for the CC conditions for the baseline New Keynesian
model, we first look for a solution of the form 7t; = fr(e) and 7y = fy(e). Let & de-
note the vector k states of the shock and similarly for the solutions 7 and y. Denote K
as the transition kernel of the Markov chain for &;. Then, with some abuse of notation,
define E;7t;41 = Km and E; ;41 = Ky, then rewrite the model equations (4a)-(4c) as the
following:

1
Ky =y+g(i—K'rc)—£,
= BKm + xy,
i = max {—[.ll, (pnn} ,

where for ease of exposition we have assumed that u; = 0 and ¢, = 0. To clarify the
notation: symbols in bold are either vectors or matrices, and 1 is a k-length unit vector.
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The DISE can be written as:
(I-K)y = —% (max {—put, prm} — Km) + &.
Then, premultiply the NKPC by (I — K) to get
(I -K)n =«x(I -K)y+B(I—-K)Kn.

Then, substitute the expression for (I — K)y from the DISE and do some slight rearranging
to write:

K K
[I -K- EK - B - K)K] 7 = - max {—u1, prm} +xe.
Continue rearranging this expression:

|1- K= 2K =g - KOK| 7w = =Ei = Zmax {0, g + i} + e

[I—K—gK—ﬁ(I—K)K]nz(l—l) [I—K—gK—ﬁ(I—K)K] %l

e,_x il
+ Gl Gmax{0,¢n(n+¢n1)}+1<£
_K-Ek_pa- Fholiok-Ck-pa- H
[I K-SK-pd K)K] (n+¢n) [I K-SK-pU K)K] -
Lk M
+ Gl amax{O,cpn (Tc+¢n1)}+1<£.
But since [(I — K) —aK — b(I — K)K] 1 = —a1 for generic scalars a and b, we can write:
[1 K-=K-p( K)K] (T(+¢nl) Sttt

[I—K—gK—ﬁ(I—K)K] (T[+¢il) =ﬂ(¢n_1)l+1cs

[K—I+§K+ﬁ(I—K)K] (n+¢i)=ﬂ(1_¢n)l—1ﬂi
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The above system can be generically written as
Bv = b + max{0,Dv}, (45)
where

B=K-I+-K+pI-KK,
[0

1
=m+——1,
v o
1 -
b:ﬂ( (PH)I—K:S,
o Pn
D=0y
o

The CC conditions can be analytical derived in the case that k = 2. We thus have a piece-
wise linear system in four orthants that can be written as:

Rl = {(01102) 101 2 O/ U 2 0}/
A1 =B-D,
Ry ={(v1,v2):01 20,02 <0},
KPr 0
Ay, =B-—-| ¢ ,
0O O
Rs ={(v1,v2) :v1 <0,02 <0},
A3 =B,
Ry ={(v1,v2): 01 <0,v2 >0},
0 0
A4 = B - (O K(jﬂ) .

Let K be defined as:

p 1-p
K = .
—

Theorem 1 of Gourieroux, Laffont, and Monfort (1980) states that the system of equations
(45) is coherent and complete if and only if all the determinants of the matrices below
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have the same sign:

_K(1_¢Tc) K Kr
cletAl_T (p+q—1)g+a(p+q 2) el
K[ q K]
detAzzg a(p—2)+(aa—1<qbn)g—a(q—1)(pn+(p+q—1)g ,
detA3:§ _(p+q—1)§+a(p+q—2) ,
det Ay = g _a(q -2)+(aoc — qun)g —alp -1+ (p+q- 1)? ,

where a = (1 — B(p + g — 1)). Alternatively, we could write the above matrices more
compactly as:

detA; = (1 - ¢y) (detB - K:f”) , (46)
detA; = det B + Kf“ [(1 — A +pA-p-q)) - gq] , (47)
det Az = det B, (48)
det Ay = detB + Ki)n [(1 -p)1+p1l-p—9q) - gp] : (49)

It is evident that the CC conditions will crucially depend on the sign of det B, which we
can write as:

detB="|(p+q-1=-(1-p(p+q-1)2-p-1)|. (50)

Observing this quantity, we know that £ > 0 and that (1 -g(p +q - 1))2-p —g) > 0.
Thus, we need to check the relative value of (p + g — 1) to see if det B is greater or less
than zero. We thus need to check two cases:

Casel: (p+g—-1)5 >(1-B(p+9-1)2-p-gq). TheRHS of the inequality is always
greater than 0, thus implying:

p+q—-1>0 = detB > 0.

Given this, what does it mean for det A; for i = {1, 2, 4}? First, rearrange the quantities
for det A; > 0 in Equation (46) to write:

O_Z
¢ﬂ < FdetB,
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as in det A1 > 0 if and only if

0 <(1-¢r)(detB - E_qun)/

, o2 o2
SoQn <minil, zdetB} & ¢ > max {1, zdetB} .

For det A, we need

KPr

o

[(1 —q)1-B(p+g-1) - gq] +detB > 0.

If the term in the square brackets is greater than zero, then det A, > 0,V > 0, so long
as det B > 0 (which was shown above). But what if this bracketed quantity is less than
zero? Then, write det A, as:

Kdr

o

0<

(L= A-Bp+q-1)- =g

<0
+=|pra-DE-a-pp+q-e-p-9),

Where we can write:
B p+q-D;-A-Bp+q-1))2-p—9q) B

= 1.
~4-1-9)1-pp+q-1)

P

>0
Use (A.3) to then write:

UZ
an < ; detB

o
<ptq-1-—(A-plp+q-1)2-p-9q)
A symmetric argument holds for det A4.

Case2: (p+q-1)Z <(1-B(p+g9-1))(2—-p—g). This case now assumes that det B <0,
so we need all the other determinants to be negative too.
For det Ay, clearly for any 0 < ¢ <1, det A1 < 0.
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det A is negative V¢ > 0 if and only if

(1—Wﬂ+ﬁﬂ—P—qD—§q<0
But if ;

A-pA+pl-p-q)-—-4>0,
then we have

O>daB+Kf“kl—mﬂ+ﬁﬂ—p—qﬁ—gﬂ

o det B
K- +pA-p-q)-=5q]

< 0.

br <

Denote ¢, as
. o
pr=p+tq-1-—(1-plp+q-1)2-p-q),

then we can write the region for which the baseline NK model satisfies the CC conditions
as:

O < O if Py >0,
on <1, if ¢, < 0.

These are the conditions in (44).

A.3.1 Derivation for Graphical Representation

First consider the absorbing state when ¢ = 0, and also when ¢y = 0, uy = 0. From

(4a)-(4c), we can write AS as:
K

1-p

7. (51)

.
Meanwhile, from the DISE we have:

L onft TR,
| -u ELB.

Substituting AS into the above expression gives AD:

KPr A TR
AD" 7,
= { Y

1-p
.y ADELB.

We plot AS and AD in Figure 1.
Next, consider the transitory state when ¢ = 27T # 0.
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PIR absorbing state. At time ¢ the economy is in a transitory state. With probability p
the economy remains in the transitory state, and with (1 — p) the economy moves to the
PIR absorbing state. From (4b), we can write:

T _  oT AT
=Ky +ppT,

where the second term on the RHS comes from the fact that in period t + 1 you may be in
a transitory state where © # 0. Thus, AS is:

L — (53)
For AD, begin by writing the DISE as:
ST T _ Lo T
g =py - cli-pit)+e.

Rearrange and substitute in (4c) and ¢ = £7T to get AD:

0(=p) »T _ _P_ 5T TR _k
AT = p=on o AD Cfor 2 % (54)
LCBGT — L #T  ADFMP for AT < — 4.

ZIR absorbing state. Here in period t the economy is in a transitory state. With probably
p the economy can remain in a transitory state, and with (1 — p) it can move to a ZIR
absorbing state. Therefore, from (4b), AS can be written as:

T=plpa" + (1 - p)(-w] +x§"
K g fa=p) (55)
1—Pﬁy 1- Pﬁ

To find AD, first begin by writing the DISE as:

i = i+ =) (FER)| 3 - (7 + - pim)

then substitute in (4c) and the ¢ to get AD:

o(1-p) »7 , 1-p | (1-P) _ _P_aT TR _®
AT _ =Y + ¢ [ —+1fpu =gl AD'® for nT > <Pn (56)
2T 4 IE [(1 B2 41| p-L-#T  ADFYP for AT < - L.
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To find 6 simply divide the slop of ADTR by the slope of AS:

8ADELB/8§T
IAS/IYT

0=

= =

K
1-pp
_o-pQa-pp)
pr '
We plot AD and AS for when the economy is in the transitory state and with PIR and ZIR
absorbing states for 0 > 1 and 6 < 1 in Figure 2.

A.3.2 Proof of Support Restrictions

For the case of 0 > 1, the two solutions imply that

1S1

roct
is a necessary support restrictions. Why? If rri* < 1, then either the gross real interest rate,
the gross target rate of inflation, or their product is less than one. But this cannot be the
case as we define u = In(rmt*).
For the case of 0 < 1, we need further support restrictions to ensure coherency. This
can be found by finding the point at which AD and AS intersect at the kink of AD. The

case with a PIR absorbing state is analytically more tractable, so we focus on that.
AD = AS when 1! = _<P_’ and when we wish to find shock size #T = 71 such that the

equations have a solution for all -7 < —7. Hence, the cutoff can be found by setting AS
and ADTR equal:

1_
ASI?T:( pﬁ)ﬁT

ADTR 4T — (CPH P)ﬁT P 5T
~o(1-p) o(1-p)

Substitute in tT = —% and rearrange to get:

_ Pr—p
“(qbn pén )
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A.4 Coherency and Completeness with an Endogenous State

We no longer assume that H;, = O and h = 0in (35), but maintain the assumption that X;
follows a k-state stationary Markov process. This implies that, as before, the i-th column of
X gives the value of X; for a given state i. However, as stipulated by AM, with endogenous
states the support of ¥; will vary endogenously over time along the MSV solution given
by ¥ = f(Y-1,X:). This implies that the solution can no longer be characterised by a
time invariant matrix Y. In other words, despite the variables X; being time invariant (by
definition as they are purely forward looking), the support of ¥; must now be a function
of ¥;_1, too. With endogenous states, along an MSV solution we have:

Ei [Yi+11% = Yiei, X = Xe;] = Y§+1KT31',

Starting from terminal date, T, the model solution is:
Yr = Gpyr-1+Zy,
where Gj, and Zj, can be solved from (30):

0= A, ,Gei +hs,, + Bs, GK'eig ' Ge;, (58)
0= (ASMZ + BstriGKTeigTZ + Bst,iZKT + CSt,iX + DSMXKT) e;, (59)

Vi=1,..., k.
Yr is a function of Gj, and Zj,, which are both treated as known.2* Thus, Y is known
and we can solve for Y7_1 from

0= (AST—lli + BST—l,iGIOKTeigTYT—lei)
+ (Bsy_y,iZj K" + Cs;_,,iX + Ds;_ i XKT) €; + hsy_ iyT—2.

For every t < T the determinants relevant for CC conditions are given by

k
|‘A]0]1| = 1_[ det (AST—lzi + BSTfl,iG]oKTeigT) :
i

24. In practice G, and Z;, are precalculated as they are not time-varying per-se but are state dependent.
For example, if Jy always corresponds to the PIR case, then the ELB is never binding and Gj, and Z;, can
easily be obtained from the model policy function (Blanchard and Kahn, 1980).
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If k = 2, the determinants can be rewritten as

|‘A]0]1| = det (A1 + B1G]0KT61gT) det (Al + BlGIOKTeng) , 1= {1,2} (PIR,PIR),
|.A]0]1 det (Ao + B()G}OKTelgT) det (Al + B1G]OKT82gT) , 1= {2} (ZIR,PIR),
|‘A]0]1| = det (Al + B1G]0KTelgT) det (A() + BOG]OKTeng) , 1= {1} (PIR,ZIR),

( ) det ( )

|‘A]0]1| =det (Ap + B()G]OKTelgT det (Ag + B()G]OKTEZgT , 1= {0} (ZIR,ZIR).
(60)
If the model is coherent and complete, use (31), with (58) and (59), to solve for Yr_;
as a function of yr_»:

-1
Yr_1e; = - (AST—l,i + BST—lfiG]oKTeigT)
[(BST_l,iZ]()KT + CsT_l,ix + DST_M'XKT) e; + hsT_l,i]/T—Z] ,

Vi=1,..., k.
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B A New Keynesian Model with Fiscal Policy

Households. The economy is populated with households indexed with i on a continuum
of measure one. The households gain utility from consumption, dislike labour, and have
access to one-period risk free bonds. The optimisation problem of the households is thus:

00 Ccl-o L1+(P
E t t _ t Z ,
CobiBE, 2P\ s o)

subject to the [nominal] period budget constraint given by

(1=1)P:Cy + By = (1 = 7°)Wi Ly + Ry1By1 + Py T,

where C; is consumption, L; is labour supply, B; denotes bonds, R; is nominal interest
rate, P; is the price level, Tf is the consumption tax rate, T;’U is the wage tax rate, and T; are
lump-sum taxes.

The consumption bundle C; consists of a continuum of differentiated goods, and is
bundled by a CES aggregator of the form:

1 e-1 €€Tl
Cy = l/ Ce(j) = djl .
0

The utility maximisation problem of the household results in the following intertemporal
Euler equation:

BE; R (Ct+1)_g Ziv1 _ 1- th+1

=
miee1 \ Gt

Z t B 1- "th )
The labour supply condition gives the following intratemporal Euler equation:

_ W
1Tt

_ ~C
1’Ct

wtCt_" = L;p

The intratemporal household problem of choosing a consumption bundle results in the
following demand for good j:
P:() )_e
Ct.

)= %

Production. Producers use labour as an input to produce differentiated consumption
goods according to the following production technology:

Yi(j) = AtLe(j).
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The price-setting problem of an individual firm j follows Rotemberg (1982) where firm j
maximises the discounted value of profits,

Pir(j)
Pi_17(j)

® 2
(1 =1)P:(j)Ye r(j) — wrLr(f) — 5 ( 1) Yir|,

{P:(i)}

o0
max E; Z Qur
T=t

subject to:

)= (2] v

where @ denotes a price adjustment cost parameter for the firms.” Y; r(j) denotes demand
at time T conditional on the price unchanged since period ¢. The firm maximises infinite
discounted stream of profits, with revenues given by the first term and costs given by the
second term. The revenues of the firm are taxed with tax level denoted by 7;. Households
own firms, thus their revenues are discounted with the households” discount factor, Q; r:

P (Cr\ 7 Zy
Qt'T_ﬁPT(Ct) Zi

The solution to the firm problem results in the following equation for inflation:?°

Yin
Y;

1
(= 1) = - [€mCt +1-€e+1je— Tf] +Et [Qt t+1(r41 — D741

Monetary authority. The monetary authority uses the [gross] nominal interest rate, R,
as its policy instrument and sets it according to a TR of the form:

&—max 1 (E)% E >
R - 7 7_(,6 Ytn 7

where ¢ and ¢, is the degree of reaction to contemporaneous inflation and the output
deviations from natural level, respectively.

Fiscal authority. The real flow budget constraint for the government is

cht+TfYt+T?)tht+Tt:Gt. (61)

25. We calibrate @ to the following:
o=— T
Q- -py)
where y is the probability of firm j being unable to optimally adjust its price in any given period as in a
model with Calvo (1983) pricing.
26. Gross inflation is defined as t; = Py /P;_q
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We make clear which taxes are enabled or disabled in each section of the paper, as we
explore different tax regimes. An additional equation —a rule fiscal policy rule —is needed
to close the model. In what follows we explore different specifications of such rules.

Market clearing. Markets clear, hence all output is consumed or used for government
expenditure,

o)
Yt:ct+ct+5(nt—1)2m.

Note that as we assume Rotemberg adjustment costs, the natural level of output, Yt”, co-
incides with headline output when ® = 0.

B.1 Log Linearised Equilibrium Conditions

Log linearising the non-linear model equations about a non-inflation deterministic steady

state yields the following: Intertemporal Euler equation:*”
C; = EsCriq — E ( ¢ + E; [Et 4 ATt+1 - 7'(t+1]) , (62)

where ¢; = AZy4q is preference shock.
Labour supply condition:*

W = 08 + @Iy + TOWY — Were, (63)
Output: R
e = dp + Iy, (64)
Inflation:
Tty = a(evﬁct — 17) + PE¢ 4. (65)
Marginal cost:
mcy = Wy — dy. (66)
Taylor rule:
iy = max {—p, s + Pyt } . (67)

Government budget constraint
R T . . . . . wL N
88t = ?tt +7%(T + &) + (T + i) + T“’T(rf’ + Wy + 1p).

Aggregate resource constraint:
:9t =cC + ggt (68)

27. We define W¢ = 15% and A% e

28. We define W% = ﬁ

¢ =
t+1
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To get an expression for 7' in terms of 4;, start by noting that wages are equal to the

marginal product of labour:
Wy = dy, (69)

and then combine with (63) to write:

Note that we assume that in the natural allocation, taxes and government spending do not
fluctuate. Then use (68) to substitute in for ¢}', and use (64) to substitute in for [}":

A o AN AN A
=<0+ —an).

Rearrange the above to write:
F = l,bya at, (70)

1
where ¢, = %.
[

Then, using (62) and (68), the DISE is given by
Ut = Bt — —(lt —Eiftrir + & + EiAT) — B AG1.
We now turn to the NKPC. From (66), (63), and (68), marginal cost is given by
mcy = %(ﬁt g% + @ + VWY =W — 44(1 + @).
Plug this into the relationship for inflation implied by Rotemberg pricing (65)

A

A ~ w AW ca 1 ~
fty = BEiTte41 + — (yt 88 + o + WO Wty — ETt 1+ (p)atl ,

to then yield the NKPC:

R R . € . w 1., o, .
= ﬁEth_l + KyYt + 5 \I]wT:U — \I]CTf - ETf - Egt - (1 + @)atl ,

where x, = (2 + @).
NKPC can be rewritten in terms of output gap, £; = §; — §;' as follows

. 1, o,
TUt ﬁEtT(H.] + nyt + 5 (\ij \yc”[t — ET? Cgt .
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The government budget constraint in (B.1) can be cast as

g(1+T + 1T -y

)gt :T’%t+TC((1—g)’/ff+ft+ﬁ?)
+ (2 + R+ P+ T (%f’+(—1(_jg+<p+1)(9?f+9f)—ﬁt((p+1) /

where © = T/Y is steady state ratio of lump-sum taxes to output.
The model is thus given by

~ N C » ~ A
e S g(lt —E¢ftp — 7)) + &, (71)
~ ~ o € W AW cac 1 AS 0 .
fty = BEsftpr + 1y &y + — | WO - WA, — =1] — =8¢, (72)
o € c
I} = max {—y, Qrlty + (pyﬁt} , (73)
g (1 +7°+ Twl%) =1t +1(1 -9t + X+ /")
(74)
+ (R + R+ )+ T (%f"+(1f +cp+1)(£t+y??)—&t(<p+1)
an_ OVya A ac 08 N
fr=— EiAdr — B/AT, — TEtAng, (75)

which are equations (15) in the main text.

As mentioned, in order to close the model, tax rules and fiscal policy rules for g; are
required. In the text and subsequent Appendix chapters, we describe the set of rules and
assumptions we make to close the model.

B.2 Proof of Proposition 1
Use the NK-FP system in (15) with the following government spending rule:
EtAGt+1 = YnTty + Py Xy

The constraint on i; can be either binding (ZIR) or slack (PIR). Substitute and rearrange
the above system of equations to get the following:

Bt — £ (OnTte + Py R — Erftenn) — gUnT + &,
= . .
Eifri1 — & (—u — Etftry1) — §Ynms + &4,

My = ﬁEtﬁt+1 + Kyft.

=>
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The vector of exogenous disturbances is denoted by X; = (& 0) " and is assumed to follow
a two-state first-order Markov process with transition kernel K defined as

(2, V)
1-9 ¢

where p, g € [0, 1] are transition probabilities. This allows to write the model in the canon-
ical form as in (2), and can be cast in the form F(Y) = A(X). Following Gourieroux, Laffont,
and Monfort (1980), it is sufficient to check that the mapping F(X) is invertible for model
coherency. The mapping is as in (3) and (42). The relevant coefficient matrices are given

by
A, = (1 + Sy + 8Py %qbnjlgwn), A = (1 + 8¢y g%),

Ky
-1 —<
By =B = ( 0 5‘7) .
Ayj,, Ay, Ay, and Aj, are then given by:

Ah:Ah:(1+E¢y+8%—?—5(1—0]) g¢n+g¢n—1+p—5(1—p))

Ky +p(l—q) pg—1 ’
a4 _(sYy+1-p-£L(1-9q) gY—-1+p—-£(1-p)
A]Z_-A]AL_( yKy'i‘ﬁ(l—I]) ﬁq_l )

Below we show that when 1, — oo, sign(Aj,) = sign(Aj,) = sign(Aj,) = sign(Aj,) and the
model thus satisfies the CC conditions. We start with Aj,, determinant of which is given

by
Ayl = M| = (g =) |1+ Sy + vy —p - (- 1)]
~ (kg +B(L= ) | Sn+ gpn—1+p = (1= p)|

If Y tends to infinity and ¢, is bounded, the second term on the RHS is positive and,
thus, |Aj,| < 0. We have that

lim |Aj;|= lim |Aj|=-c (76)
11/)71—)00 1/)71—>oo
We proceed with | Ay, | = |.Aj,|, which is nothing but

Apl = 14y = [guy +1-p = S0 =9)| (g - 1)

. (77)
~ Gy + 1= ) g~ 1+p = S -p)|
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As previously, the second term on the RHS is positive if 1 tends to infinity and ¢, is
bounded. Hence, we have that

¢lim |Aj,| = l#hl’n |Aj,| = =00 (78)

Thus, we have that if ; — oo, the determinants of A]]., j € {1,2,3,4}, are negative. If
P — —oo, the same logic applies. In this case, the determinants of A}, j € {1,2,3,4}, are
positive. This completes the proof. B

Lower bound for ip;. We now find the lower bound for 1 that guarantees the satisfac-
tion of the CC conditions. For ease of exposition, we assume that 1p;, = 0. The model is
coherent and complete, when |.A;j, | < 0. Hence 1, must satisfy:

[1+<hy—p-<A-9)]Bg—1)—(y +pL—q) [SPrn+ gPr—1+p - <(1-p)] <O,
[1-p-£0-9]Bg-1) -, +B(1—-9) |g¢Pn—1+p-<(1-p)]| <O.

Rearrange to get

[T+ L0y —p— -] (Bg—1) < (ky + A=) [EPn+8¢r —1+p - £(1-p)],
[1-p-£0-9]Bg-1) <y +pA-q) [g¥n—1+p-<1-p)].

Rearrange to get the system that 1, must satisfy. Note that depending on the values of
monetary policy feedback parameters, ¢ and ¢, one of the conditions is redundant

1+5¢y—p—5(1-0)|(B7-1)
[ y(Ky+ﬁ(1—q))] <SPn+8YPr—1+p-5(1-p),
[1-p-£1-9)](Bg-D)

(i, +p(1-7)) <gYn—-l+p-51-p).

If the monetary authority follows strict inflation targeting (¢, = 0), given the second
inequality, the first one is redundant with respect to 1. Thus inspecting the second in-
equality we have:

[1-p-<1-9)]Bg-1)
(ky + (1 = q))

+1—p+§(1—p)}l—&<¢n,

i
where ¢;; denotes the lower bound for ;.

B.3 The Unconventional Fiscal Policy Case

The first fiscal rule we inspect is what we term the “unconventional fiscal policy” (UFP)
rule that replicates monetary policy at the ELB and mirrors the approach in Correia et

54



al. (2013) and Seidl and Seyrich (2023). Assume that the government expenditure growth
rate, E;AQt+1, responds to contemporaneous inflation and the output gap when the interest
rate is at the ELB:

ErA§ts1 = 1{iy = —u}(Wlhs + Py Re), (79)

where 17 and ¢y denote the coefficients of reaction to inflation and the output gap, re-
spectively.

The presence of the FP instrument in the DISE allows the piecewise linear system to
satisfy the CC conditions, despite the presence of the ELB constraint on i; and an active
TR. The instrument E;Ag;+1 has the same effect in the NK model as the monetary policy
instrument and, hence, it governs the linearity of the DISE (15a). The CC conditions are
satisfied so long as:

u_ C u_ €
¢n - g_G(PTU laby - E(Py' (80)

which also allows (15c) to follow an active TR (¢ > 1). It is straightforward to see that
since the model is now linear, it is generally coherent and complete. The UFP rule embeds
the mechanism of the simple model in Correia et al. (2013), which showed that a set of
tax instruments can replicate monetary policy when the interest rate subject to the ELB
constraint. This rule also applies to models where monetary policy is strictly inflation
targeting, whereby if ¢, = 0 then ¢, = 0. Thus, we have the following proposition:

Proposition 2. A baseline New Keynesian model with fiscal policy that consists of government
spending, lump-sum, and output taxes as defined in (15), is generally coherent and complete when
the sensitivity parameters of the fiscal instrument, Y7 and y, allow fiscal policy to replicate mon-
etary policy at the ELB as described in the “unconventional fiscal rule in Equation (79).

Coherency and completeness in this case is illustrated in Figure 9 for the special case
where ¢, = ¢ = 0. We plot AD and AS for both the absorbing (steady state) case where
et = 0 (Subfigure 9a) and the transitory state with a PIR absorbing state (Subfigure 9b).

In the absence of active FP, the AD curve is illustrated, as before, with a piecewise
red line, which may not intersect AS as shown with ADELBTR jn Subfigure 9a and AD;
in Subfigure 9b. Once FP is activate at the ELB, as in the UFP fiscal rule (79), it fully
mimics monetary policy as if the latter were unconstrained. Thus, AD is a linear relation
composed of the red ADTR line and the purple AD* line. In other words, in the presence
of active FP stemming from the UFP rule, the model always has a unique solution.

B.4 Optimal Monetary Policy with Discretion

We now consider the case where the monetary authority operates optimal monetary policy
under discretion (OP), as in Nakata (2018) and Nakata and Schmidt (2019). The optimal
policy condition, when i; is unconstrained, is:

ayﬁt + Kyﬁt =0, (81)
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Figure 9: Coherency and Completeness with Unconventional Fiscal Policy Rule

$r> 1 -5 <1 Ty

>1>p>0
AS Pz AS #=7758

15 ADI® ADI®

R 2

PIR

N s

(a) Absorbing State (b) Transitory State with PIR Absorbing

Note: Left panel illustrates the steady-state equilibrium. Right panel illustrates the transitory state equilib-
rium with a PIR absorbing state.

where a, is the relative weight that the policy maker attaches to the output gap in its loss
function. When the ELB is non-binding, the model is given by condition (81), together
with the NKPC given by

ﬁt = ‘Bﬁt.;.l + Kyff, (82)

and the fiscal rule is as before given by Equation (16):
EtAZt+1 = YnTts + Py Tt
When the ELB is binding the model is given by the following set of equations:
Ut = Bt — g (—p — Esftez1) — §EAGt41 + &4, (83)
fty = BEsTts1 + 1y Xy (84)
We thus have the following proposition

Proposition 3. A baseline New Keynesian model with fiscal policy that consists of government
spending, lump-sum taxes, and output taxes as defined in (81)-(84) is generally coherent and
complete when the reaction of fiscal policy to deviations of inflation is sufficiently strong.
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Proof of proposition. The model can be cast in the canonical form with the relevant

matrices given by
_[(ay xy (1 g
Al‘(xy —1)' AO‘(Ky -1’

o e ]

Ay, Ay, Ay, Aj, are given by

_ _ ay Ky
Ah‘“qh‘(ww(l—q) ﬁq—l)’

4 _[(1-p-£Q-9q) gY-1+p-¢%
A’Q‘AI‘*‘(Kwﬁ(l—q) Bg-1 )

We start with [Aj, | = [Aj,]:
|Ap| = [Apl = ay(ﬁq -1) - Ky(Ky +p(1-¢q)) <0.
Since |Aj,| = |AJ;| < 0, we require that ¢, is such that [Aj,| = |Aj,| <0
c
Apl= 1Al =0 -p-—1-9)Fg-1)
c
— (g +pA = D)gYn —1+p ——4)

If ; — oo, the determinants are negative. This completes the proof. B
Lower bound for ¢. 1, must satisfy that |A},| = |Aj,| <0

(1=p == =) —1) < (c, +B(1 = D)gyr—1+p = =q)

which yields the lower bound for ¢
{(1 —P-51-9)(Bq-1)

(ky +B(1 = q))

We plot the region for where the model satisfies the CC conditions as a function of {5,
and v, in Figure 10.
To illustrate the intuition of our findings, consider the absorbing state of the model

Cc _
+1—P+gq}g L= Yn < ¥n
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Figure 10: Coherency and Completeness Region for Optimal Monetary Policy and Infla-
tion and Output Gap Fiscal Rule
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Blue denotes regions where coherency and completeness conditions are satisfied. Red denotes regions
where the model is incoherent or incomplete.

with & = 0.
t= g AS 85
n= 1-— ‘By ’ ( a)
Ay ~ A
A _K_iy ADC? for & > —y, (85b)
‘P*lK_yﬁyA —u ADFBforft < —pu.

We plot this system of equations for the case of passive and active FP in Figure 11.

We underline the following when observing Equation (85). First, note that ADELE in
this regime is identical to ADEL® in Equation (20). This makes intuitive sense as when
facing the ELB constraint, the monetary authority is no longer able to conduct optimal
monetary policy. Secondly, as seen in Figure 11, ADY" has a negative slope which implies
that there always exists a PIR equilibrium. The ZIR equilibrium can only exist below the
ADPOP line when FP is passive (" < 1). Additionally, in the case where * < 1, ADELB
is bound from above by the ELB on the interest rate, —u, whereby 1" = 0. Hence, we can
rule out multiple PIR equilibria, and the system in Equation (85) nests the NK-OP system
as described in Ascari and Mavroeidis (2022).

Next, consider the transitory state with ¢; = %fT

< 0. Here the economy starts off

58



Figure 11: Absorbing State with Optimal Discretionary Monetary Policy (&; = 0)

A A

yw* > 1 T4 yp* <1 T4

AS

AS

ADOP ADOP

ADELB/

Plot on the left depicts the positive interest rate absorbing state with an active fiscal policy regime. Plot on
the right shows the equilibria for a passive fiscal policy regime.
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in a transitory state for an indefinite period of time before jumping to an absorbing state.
Below we describe the MSV for both PIR and ZIR absorbing states, which we plot in Figure
12.

OP transitory state with PIR absorbing. This implies that the system takes the following
form:

AT Ky T

U= AS, (86a)
1-pp”

Ay AT opr

=7 AD%",

AT _ K

o= {0(1y—P) AT _ B _ P T ApDELB (86b)
v Y T T ) '

With active FP, AD®? and ADF!® are both downward sloping. Analogously, as in the
absorbing state where ¢; = 0, ADELB in Equations (21) and (86) are identical. Thus,
the model is coherent and complete. However, this is not true for passive FP, whereby the
acutely kinked AD-curve implies the presence of a ZIR absorbing state. Thus, we conclude
that when ¢* < 1, the NK-OP model fails to satisfy the CC conditions.
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Figure 12: Transitory States with Optimal Discretionary Monetary Policy under Active or

Passive Fiscal Policy
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Top row plots are with a positive interest rate absorbing state. Bottom row plots are with a zero interest rate
absorbing state. Top left plot is with an active fiscal policy regime (¢* > 1). Top right and bottom plots are

with passive fiscal policy regimes (1" < 1).
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OP transitory state with ZIR absorbing. A ZIR absorbing state is unfeasible with an
active FP regime (¢* > 1), as shown in Equation (85) and Figure 11. Thus, for ¢* > 1,
a system in a transitory state will eventually move to a PIR absorbing state as described
above.

As mentioned, when ¢* < 1 the model does not satisfy CC conditions and there exists
a ZIR absorbing state, as the the slope of ADELE can be upward sloping and flatter than
that of AS. In such a case, the system takes the following form:

AT Ky o (1-pu
= 7 o+ p— AS, (87a)
1-pp Y -1
Ay AT o)

~dg AD®",

~T _ Ky

T = { (1-p)o ~7 __ (=-pu [(1—5)0 + 1] __B__ _P 5T ApDELB (87b)
cpv Y T @D | oxy 0 ) :

Here too ADELP in Equations (23) and (87) are identical, following the previously ex-
plained logic.

B.5 Canonical Form Coefficients under Consumption Tax Rules

A contemporaneous inflation targeting rule implies:
E:AT, | = YaTts. (88)

The relevant coefficient matrices are given by:

A = (100 (¢ +_¢in)a-1), Ag = ( 1 lPT(G_l)’

and

p

A contemporaneous inflation and output targeting rule implies:

-1 —¢!
]

EiAT, | = Yatts + 1y (89)

The relevant coefficient matrices are given by:

A= 1+ (gbyK+ 1,Dy)(f_1 G‘l(qb_n1+ ybn)) A= (1 + ybya_l G__libn ’

y Ky

and



B.6 Contemporaneous Rules

Now, we assume that the rule in Equation (16) is replaced with a contemporaneous or
non-inertial fiscal feedback rule of the form

St = YaTty + Py &y (90)

We also assume that only lump-sum taxes are levied, so there is a one-to-one mapping of
lump-sum taxes to government spending. We then have the following proposition:

Proposition 4. A baseline New Keynesian model with a simple fiscal rule described by (90) and
(15), in which monetary policy adheres to strict inflation targeting (¢, = 0) and the Taylor prin-
ciple is satisfied (¢ > 1), fails to satisfy the coherency and completeness conditions.

The relevant coefficient matrices for the proof of proposition 4 are:

A, = —co P+ g¥n -1+ gy, —co P,
-1 -x4¢n Ky — Kqlby !

A0=( 8P _1+g¢y)’
“1-xen Ky —KeYy
and )
co —Quy 1-
Bo=Bl=(6 ‘BglP gllly).
Rearranging the system of equations and obtaining the relevant matrices from the

canonical form with relevant coefficients provided in Appendix B.6, CC conditions are
satisfied if and only if the signs of |.A}, | and | A},| are identical. This is not the case since

|Aj;| = A1 + B112]

— %(1 - ¢n) 0
B—1-xen xy—Kgethy
_ el - ¢y = gy (91)
5 ,
Ayl = ey~ gtpw) _GKg%).

To put simply, the above gives |Aj, | = |A},|(1 = ¢x), which implies that under an active TR
the NK model with FP rule (90) does not generally satisfy the CC conditions.

As in the baseline NK model without FP, this can be seen graphically in the case of the
absorbing state (& = 0) or the transitory state with a PIR absorbing state. We illustrate
the case of the absorbing state with 1, = 0 by rearranging the system of equations into
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Figure 13: Strict Inflation Targeting Monetary Policy: Absorbing State
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The absorbing state is described as the permanent state of the economy when ¢; = 0. Monetary policy is
conducted by adjusting the nominal interest rate to only close the inflation gap, implying that ¢, = 0.

AS and AD schedules:

K
A v "
n=—————% AS, 92a
Prky o TR
4= A TFeg.s  ADT (92b)
_y ADELB.

Notice that with the introduction of FP, both the AS and ADR are augmented and
sensitive to two FP parameters: the NKPC coefficient of government expenditure, ¢, and
the FP rule reaction parameter to inflation, ¢,. Furthermore, notice that the slopes of
AS and ADTR are dependent on the relative sizes of these parameters. Namely, if i/, >
(1-p)/xg, then AS and AD are diagrammatically similar to the case of the baseline NK
model with no FP (Figure 1), with two solutions — one PIR and one ZIR. This is illustrated
in the left diagram of Figure 13. However, if the condition ¢, < (1 — )/x¢ holds, then
both AS and ADTR become downward sloping, and if ADTR is steeper than AS then only
one unique solution remains — the PIR equilibrium. This case is illustrated in the right
diagram of Figure 13.

But is the condition 1, < (1 — B)/x¢ enough to ensure a unique solution once the
economy is subject to shocks? No. To see this diagrammatically we consider the economy
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Figure 14: Strict Inflation Targeting Monetary Policy: Transitory State with PIR Absorbing
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In each period the economy is subject to a shock with probability p. With complementary probability 1 -p,
the economy transitions to the PIR absorbing state. Monetary policy is conducted by adjusting the nominal
interest rate to only close the inflation gap, implying that ¢, = 0.

when it starts in the transitory state and is subject to shocks with probability p in each
period, and with probability 1 — p the economy transitions to its PIR absorbing state. AS
and AD can then be written as follows:

Ky

AT AT
= X" AS, 93a
1-pB+xrghn (93a)
G(l—p) AT _ p AT TR
AT = ) perp)ogha—cgn™ ~ pr-pIgova—cn AP (93b)
ol=p) o1 _ ¢ _ 4 4T ADELB
pe+(I-p)ogyn pergov(-pt = cpri-p)govn :

Figure 14 plots AS and AD from (93), where we can clearly see that regardless of the
relative size of k¢ and ¢, the CC conditions are not satisfied and thus, in general, no
solution exists or that two solutions exist. This result holds true even when the condition
Yr < (1= p)/x¢ holds, which is the condition needed to ensure a unique absorbing state.

Monetary policy targets inflation and output gap. Consider the case where the mone-
tary authority targets both the inflation and output gap, (¢, > 0).
As before, rearrange the model for the absorbing state where ¢; = 0, and express the
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Figure 15: Contemporaneous Fiscal Policy and Taylor rule with Inflation and the Outgap
Gap
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(a) PIR Absorbing State (b) Transitory State with PIR Absorbing State

model in two equations, AS and AD:

n=0x AS, (94a)
_[(0:@+9y)% 4D,
T = {_‘u ADELB (94b)
where
©=_" Kgly .
1-p+ Kggbn

Note carefully that the slopes of AS and AD in (94) are potentially ambiguous. In line
with the calibration in Table 1 and with ¢, ¥’ being sufficiently large in absolute value,
the following assumptions on parameter values are made:

©<0, ¢:0+¢,>0,

which then implies
O - Pr) < ¢y.

One can see that the LHS of the above inequality is always positive, and that ¢, must
be sufficiently large for the inequality to hold. This inequality highlights the role of a TR
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that includes both inflation and the output gap. If monetary policy follows a strict inflation
targeting regime, the inequality would never be satisfied and, hence, no matter the fiscal
policy stance (captured by ©), the existence of multiple absorbing states is never ruled
out. Hence, multiplicity of steady states in this case is only ruled out under a particular
configuration of fiscal-monetary mix. In other words, should the slope of AS be positive
then under conventional restrictions on TR parameters, the slope of AD™® would also be
positive and greater than that of AS, creating the two — PIR and ZIR - absorbing states.
With these assumptions, AS and AD in (94) is plotted in Figure 15a, and we have the
following proposition:

Proposition 5. A baseline New Keynesian model with a simple fiscal rule described by (90) and
(15), is coherent and complete if fiscal policy responds aggressively enough to inflation and the
output gap and monetary policy responds to both inflation and the output gap.

Next we show analytical results for when the economy is in the transitory state. As
mentioned above, as the ZIR absorbing state is eliminated, we restrict attention to the ex-
istence of a unique PIR absorbing state. Assume that initially the economy is in a transitory
state with &; # 0 and it will remain in this transitory state with probability p. The system
can then be written as follows

ST _ Ky T Kethy 4T
1-pp+ Kgybn

o(-p)A-8Yy)tchy oT _ p
AT = {pc+(1p)agt,bHC¢n cp+(1-p)goyn—con

AS, (95a)

PT AD'%,

i,.‘T ADELB.

o(1-p)(1-g¥y) o7 (95b)

- : - P
pct(l-p)ogin petgoyr(1-p) H cp+(1-p)gopn

With ¢, sufficiently large and 1), positive but not too large, AS is downward sloping and
AD™R is upward sloping. Since ADELP is also upward-sloping (p < 1) or flat (p = 1),
there is a unique solution for any realisation of 7. The system (95) is illustrated in Figure
15b.

Much like the case for the absorbing state, the downward sloping AS curve is central
to the uniqueness result. This is predicated on: (i) direct influence of fiscal policy on
aggregate supply, (ii) fiscal policy being procyclical, and (iii) the TR also being a function
of the output gap. Absent of either of the aforementioned points, the model would imply a
non-unique solution and, thus, the policy stance presented above merely presents a special
case that is not applicable to a more general class of models. First, absent of direct fiscal
policy effects, the AS curve is always upward sloping as in a baseline NK model. This is
true, for example, if there is no income effect on the household’s labour supply decision
due to preferences such as in Greenwood, Hercowitz, and Huffman (1988) (GHH), or if
labour is supplied inelastically. In such a case, fiscal policy would not directly affect AS
and thus its slope would remain positive. Second, even if fiscal policy had direct effects
on AS, it needs to react positively to deviations of inflation and output. If this were not to
hold, AS would be upward sloping, which would generate multiple solutions.
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However, the result is robust to the calibration of the government expenditure share in
output, ¢. To illustrate this, consider upper and lower bounds on . The upper bound
on ¢, can be inferred from the restriction on ADFLE being upward sloping or flat, which
is the case if and only if

1
=gy 20 = gy < .

The lower bound on ¢, can be inferred from the restriction on the slope of AS which must
be negative. This implies that

K
y
Ky — Koy <0 = ¢y>K—.

These conditions imply that the model is coherent and complete only if

K
—y>l - —Qg2+(g+1)g—1>0,
Keg &

where ¢ = ¢/0. Thence, the relationship holds for ¢ < min(1,1/p), which is always the
case if the coefficient of relative risk aversion is greater than inverse-Frisch elasticity of
labour supply, 0 > ¢.

Finally, to visually see the need for procyclical fiscal policy — and the upper and lower
limits on ¢, — we numerically compute regions for which CC conditions are satisfied in
{¢n, ¥y} space in Figure 16.
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Coherency and Completeness Region for Inflation and Output Gap Targeting

Monetary Policy

Figure 16
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Blue circles denote regions where coherency and completeness conditions are satisfied. Red triangles de-

notes region where the model is either incoherent or incomplete.
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B.7 NK-FP Model with Government Spending Inertia

The canonical form coefficients are given by

Al =

By =By =

C =

Ky
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0
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